See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-3B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ee246e1cf44907e3_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ee246e1cf44907e3_train_data.json
type:
field_input: alpaca_prompt
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/8c18c43d-90b9-4648-969f-63d26cb472cf
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2346
micro_batch_size: 4
mlflow_experiment_name: /tmp/ee246e1cf44907e3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f478fe17-192c-420c-a529-b29997372dec
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f478fe17-192c-420c-a529-b29997372dec
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
8c18c43d-90b9-4648-969f-63d26cb472cf
This model is a fine-tuned version of unsloth/Qwen2.5-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4584
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2346
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 2.4598 | 0.0005 | 1 | 2.6155 |
| 1.7502 | 0.0542 | 100 | 1.6519 |
| 1.757 | 0.1084 | 200 | 1.6321 |
| 1.3307 | 0.1625 | 300 | 1.6223 |
| 1.7703 | 0.2167 | 400 | 1.6144 |
| 1.6688 | 0.2709 | 500 | 1.6013 |
| 1.7145 | 0.3251 | 600 | 1.5877 |
| 1.4751 | 0.3792 | 700 | 1.5761 |
| 1.564 | 0.4334 | 800 | 1.5609 |
| 1.2658 | 0.4876 | 900 | 1.5493 |
| 1.3008 | 0.5418 | 1000 | 1.5364 |
| 1.4833 | 0.5960 | 1100 | 1.5234 |
| 1.4851 | 0.6501 | 1200 | 1.5088 |
| 1.7207 | 0.7043 | 1300 | 1.4980 |
| 1.7282 | 0.7585 | 1400 | 1.4884 |
| 1.4935 | 0.8127 | 1500 | 1.4766 |
| 1.4607 | 0.8669 | 1600 | 1.4662 |
| 1.1588 | 0.9210 | 1700 | 1.4571 |
| 1.5499 | 0.9752 | 1800 | 1.4506 |
| 1.1475 | 1.0294 | 1900 | 1.4587 |
| 0.9174 | 1.0836 | 2000 | 1.4584 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support