See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: fxmarty/tiny-dummy-qwen2
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 50c9e2f5e890969e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/50c9e2f5e890969e_train_data.json
type:
field_instruction: instruction
field_output: chosen_response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/dfe5b386-7689-4b46-8540-dc47ace2edfb
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4679
micro_batch_size: 4
mlflow_experiment_name: /tmp/50c9e2f5e890969e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ac700e19-5242-448c-86d7-7306a9164c1c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ac700e19-5242-448c-86d7-7306a9164c1c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
dfe5b386-7689-4b46-8540-dc47ace2edfb
This model is a fine-tuned version of fxmarty/tiny-dummy-qwen2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.9163
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 4109
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 11.9329 | 0.0005 | 1 | 11.9324 |
| 11.9218 | 0.0487 | 100 | 11.9209 |
| 11.9212 | 0.0974 | 200 | 11.9200 |
| 11.9206 | 0.1460 | 300 | 11.9193 |
| 11.9165 | 0.1947 | 400 | 11.9187 |
| 11.9205 | 0.2434 | 500 | 11.9182 |
| 11.9184 | 0.2921 | 600 | 11.9180 |
| 11.9192 | 0.3407 | 700 | 11.9178 |
| 11.9175 | 0.3894 | 800 | 11.9176 |
| 11.9191 | 0.4381 | 900 | 11.9174 |
| 11.9165 | 0.4868 | 1000 | 11.9174 |
| 11.9178 | 0.5354 | 1100 | 11.9172 |
| 11.9183 | 0.5841 | 1200 | 11.9172 |
| 11.9185 | 0.6328 | 1300 | 11.9170 |
| 11.9162 | 0.6815 | 1400 | 11.9170 |
| 11.918 | 0.7301 | 1500 | 11.9168 |
| 11.9175 | 0.7788 | 1600 | 11.9169 |
| 11.9171 | 0.8275 | 1700 | 11.9167 |
| 11.9182 | 0.8762 | 1800 | 11.9167 |
| 11.9166 | 0.9249 | 1900 | 11.9166 |
| 11.9176 | 0.9735 | 2000 | 11.9166 |
| 12.3114 | 1.0222 | 2100 | 11.9165 |
| 13.4333 | 1.0709 | 2200 | 11.9166 |
| 15.1108 | 1.1196 | 2300 | 11.9165 |
| 12.4772 | 1.1682 | 2400 | 11.9165 |
| 12.2957 | 1.2169 | 2500 | 11.9164 |
| 12.2061 | 1.2656 | 2600 | 11.9164 |
| 13.2965 | 1.3143 | 2700 | 11.9164 |
| 12.2792 | 1.3629 | 2800 | 11.9164 |
| 11.7337 | 1.4116 | 2900 | 11.9163 |
| 11.2628 | 1.4603 | 3000 | 11.9163 |
| 12.6356 | 1.5090 | 3100 | 11.9163 |
| 11.6645 | 1.5577 | 3200 | 11.9163 |
| 12.7076 | 1.6063 | 3300 | 11.9163 |
| 12.6979 | 1.6550 | 3400 | 11.9163 |
| 12.171 | 1.7037 | 3500 | 11.9163 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/dfe5b386-7689-4b46-8540-dc47ace2edfb
Base model
fxmarty/tiny-dummy-qwen2