Bangla Hate Speech Detection Model
This model is fine-tuned for binary hate speech detection in Bangla text.
Model Description
- Base Model: sagorsarker/bangla-bert-base
- Task: Binary Classification (Hate Speech vs Non-Hate Speech)
- Language: Bangla (Bengali)
- Training Method: Baseline training only (original behavior)
Training Details
Training Hyperparameters
- Batch Size: 64
- Learning Rate: 3e-05
- Epochs: 30
- Max Sequence Length: 128
- Dropout: 0.1
- Weight Decay: 0.01
- Warmup Ratio: 0.1
Training Data
- K-Fold Cross-Validation: 5 folds
- Stratification: binary
Performance
Add your metrics here after training
Usage
from transformers import AutoModel, AutoTokenizer
import torch
import torch.nn as nn
import json
# Load model components
encoder = AutoModel.from_pretrained("path/to/model")
with open("path/to/model/classifier_config.json", 'r') as f:
c_config = json.load(f)
classifier = nn.Sequential(
nn.Linear(c_config['hidden_size'], 256),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(256, c_config['num_labels'])
)
classifier.load_state_dict(torch.load("path/to/model/classifier.pt"))
tokenizer = AutoTokenizer.from_pretrained("path/to/model")
# Predict
def predict(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128)
with torch.no_grad():
outputs = encoder(**inputs)
cls_embedding = outputs.last_hidden_state[:, 0, :]
logits = classifier(cls_embedding)
prob = torch.sigmoid(logits).item()
return prob
text = "আপনার বাংলা টেক্সট এখানে"
prob = predict(text)
print(f"Hate Speech Probability: {prob:.4f}")
Citation
If you use this model, please cite:
@misc{bangla-hate-speech-model,
author = {Nabil},
title = {Bangla Hate Speech Detection Model},
year = {2026},
publisher = {HuggingFace},
}
License
MIT License
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support