YAML Metadata Warning: The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

Produced by Antigma Labs, Antigma Quantize Space

Follow Antigma Labs in X https://x.com/antigma_labs

Antigma's GitHub Homepage https://github.com/AntigmaLabs

llama.cpp quantization

Using llama.cpp release b5223 for quantization. Original model: https://huggingface.co/unsloth/Devstral-Small-2505 Run them directly with llama.cpp, or any other llama.cpp based project

Prompt format

<|begin▁of▁sentence|>{system_prompt}<|User|>{prompt}<|Assistant|><|end▁of▁sentence|><|Assistant|>

Download a file (not the whole branch) from below:

Filename Quant type File Size Split
devstral-small-2505-q2_k.gguf Q2_K 8.28 GB False
devstral-small-2505-q3_k_l.gguf Q3_K_L 11.55 GB False
devstral-small-2505-q6_k.gguf Q6_K 18.02 GB False
devstral-small-2505-q4_k_m.gguf Q4_K_M 13.35 GB False
devstral-small-2505-q5_k_m.gguf Q5_K_M 15.61 GB False
devstral-small-2505-q8_0.gguf Q8_0 23.33 GB False

Downloading using huggingface-cli

Click to view download instructions First, make sure you have hugginface-cli installed:
pip install -U "huggingface_hub[cli]"

Then, you can target the specific file you want:

huggingface-cli download https://huggingface.co/Antigma/Devstral-Small-2505-GGUF --include "devstral-small-2505-q2_k.gguf" --local-dir ./

If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:

huggingface-cli download https://huggingface.co/Antigma/Devstral-Small-2505-GGUF --include "devstral-small-2505-q2_k.gguf/*" --local-dir ./

You can either specify a new local-dir (deepseek-ai_DeepSeek-V3-0324-Q8_0) or download them all in place (./)

Downloads last month
160
GGUF
Model size
24B params
Architecture
llama
Hardware compatibility
Log In to view the estimation

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Antigma/Devstral-Small-2505-GGUF