TTA: Transcribe, Translate and Alignment for Cross-lingual Speech Representation
Paper
β’
2511.14410
β’
Published
TTA is a multilingual model that jointly supports transcribe, translate, and align tasks. It provides strong multilingual ASR/ST performance and cross-lingual speech retrieval capability.
π Paper: https://arxiv.org/abs/2511.14410
π Model: https://huggingface.co/AudenAI/auden-tta-m10
π Encoder: https://huggingface.co/AudenAI/auden-encoder-tta-m10
π Code: https://github.com/AudenAI/Auden/tree/main/examples/tta
from auden.auto.auto_model import AutoModel
# 1) Load a model checkpoint directory (contains config.json + weights)
model_dir = "AudenAI/auden-tta-m10" # or any exported directory / HF repo id
model = AutoModel.from_pretrained(model_dir)
model = model.to("cuda")
model.eval()
# 2) Prepare input features (x, x_lens). If you have raw audio, you can use
# model.speech_encoder.extract_feature(wav) to get (x, x_lens).
x, x_lens = ... # Tensor shapes: (B, T, F), (B,)
inputs = (x, x_lens)
# Alternatively, you can pass WAV inputs directly:
# - List of WAV paths (str):
# inputs = ["/abs/a.wav", "/abs/b.wav"]
# - List of mono waveforms (Tensor/ndarray), 16 kHz:
# inputs = [torch.randn(16000*5), torch.randn(16000*3)]
# 3a) Transcribe (RNNT greedy)
out = model.generate(inputs, task="transcribe", blank_penalty=0.0, return_timestamps=False)
print(out["hypotheses"]) # list[str]
# 3b) Translate (attention beam search). Language can be a single str or a list[str] per utterance
out = model.generate(
inputs,
task="translate",
beam_size=5,
source_language=["zh"] * x.size(0),
target_language=["en"] * x.size(0),
)
print(out["hypotheses"]) # list[str]
print(out["source_language"]) # list[str], model-predicted or provided
print(out["target_language"]) # list[str], model-predicted or provided
# 3c) Align (audio-text similarity)
texts = ["hello world", "good morning"]
out = model.generate(inputs, task="align", texts=texts)
print(out["similarities"]) # (B, len(texts))
print(out["audio_emb"]) # (B, emb_dim)
print(out["text_emb"]) # (B, emb_dim)
from auden.auto.auto_model import AutoModel
encoder = AutoModel.from_pretrained("AudenAI/auden-encoder-tta-m10")
encoder = encoder.to("cuda")
# 2) Prepare input features (x, x_lens). If you have raw audio, you can use
# encoder.extract_feature(wav) to get (x, x_lens).
x, x_lens = ... # Tensor shapes: (B, T, F), (B,)
encoder_output = encoder(x, x_lens)
print(encoder_output["encoder_out"]) # (B, T//4, D)
print(encoder_output["encoder_out_lens"]) # (B)
AudenAI/auden-encoder-tta-m10)| Model | #Params | AISHELL1/2 (CERβ) | Wenet (CERβ) | LibriSpeech (WERβ) | CommonVoice (WERβ) | MLS (WERβ) | VoxPopuli (WERβ) | FLEURS (WERβ) | CoVoSTv2 (BLEUβ) |
|---|---|---|---|---|---|---|---|---|---|
| Whisper Medium | 762M | 6.74 / 6.23 | 11.00 / 22.68 | 2.88 / 6.08 | 11.86 | 7.27 | 12.08 | 6.62 | 35.12 |
| Whisper Large-v2 | 1.54B | 5.90 / 5.24 | 9.47 / 22.77 | 2.64 / 5.14 | 9.70 | 5.65 | 11.90 | 5.20 | 38.80 |
| Whisper Large-v3 | 1.54B | 5.33 / 4.76 | 9.00 / 15.68 | 2.01 / 3.89 | 8.30 | 4.48 | 13.78 | 4.51 | 37.60 |
| ZT (ASR) | 199M | 1.89 / 3.14 | 6.91 / 6.08 | 1.58 / 3.62 | 6.92 | 5.82 | 11.12 | 6.35 | β |
| ZT-AED (ASR) | 246M | 1.82 / 3.07 | 6.89 / 6.18 | 1.54 / 3.59 | 6.70 | 5.71 | 10.78 | 6.18 | β |
| ZT-AED (Full) | 246M | 1.80 / 3.03 | 6.96 / 5.94 | 1.56 / 3.76 | 6.69 | 5.72 | 10.88 | 6.17 | 34.72 |
| π₯ TTA (Ours) | 247M | 1.85 / 3.09 | 7.06 / 6.44 | 1.58 / 3.85 | 6.76 | 5.74 | 10.87 | 6.19 | 35.28 |
| Encoder | Aishell CERβ | LibriSpeech WERβ |
|---|---|---|
| Whisper-Medium | 5.47 | 4.66 |
| Whisper-Large | 4.87 | 3.64 |
| ZT-AED | 2.92 | 2.30 |
| TTA (Ours) | 1.92 | 1.95 |
Full data composition (open-source links + in-house aggregation):
| Language | Data Source | Type | Hours | Total Hours | Share |
|---|---|---|---|---|---|
| Chinese (Zh) | WenetSpeech | Open Source | 10,005 | 129,265 | 37.1% |
| AISHELL-2 | Open Source | 1,000 | |||
| AISHELL-1 | Open Source | 150 | |||
| Common Voice | Open Source | 237 | |||
| Yodas | Open Source | 222 | |||
| In-house Data | In-house | 117,651 | |||
| Code-Switch | TALCS | Open Source | 555 | 8,924 | 2.6% |
| In-house Data | In-house | 8,369 | |||
| English (En) | Libriheavy | Open Source | 45,751 | 107,626 | 30.9% |
| Multilingual LibriSpeech (MLS) | Open Source | 44,659 | |||
| GigaSpeech | Open Source | 10,000 | |||
| Yodas | Open Source | 3,426 | |||
| Common Voice | Open Source | 1,778 | |||
| LibriSpeech | Open Source | 960 | |||
| VoxPopuli | Open Source | 522 | |||
| TED-LIUM | Open Source | 453 | |||
| AMI Corpus | Open Source | 77 | |||
| Japanese (Ja) | ReazonSpeech | Open Source | 35,389 | 40,426 | 11.6% |
| Yodas | Open Source | 499 | |||
| Common Voice | Open Source | 19 | |||
| In-house Data | In-house | 4,519 | |||
| Korean (Ko) | KsponSpeech (AIHub) | Open Source | 965 | 20,095 | 5.8% |
| KrespSpeech (AIHub) | Open Source | 2,906 | |||
| KconfSpeech (AIHub) | Open Source | 2,928 | |||
| MeetingSpeech (AIHub) | Open Source | 4,962 | |||
| GyeongsangSpeech (AIHub) | Open Source | 2,481 | |||
| Yodas | Open Source | 1,528 | |||
| Common Voice | Open Source | 1 | |||
| In-house Data (Aggregated) | In-house | 4,324 | |||
| Russian (Ru) | Golos | Open Source | 1,221 | 15,246 | 4.4% |
| Public Speech & Radio | Open Source | 1,651 | |||
| Buriy Audiobook | Open Source | 874 | |||
| Public Youtube Dataset | Open Source | 809 | |||
| Yodas | Open Source | 2,606 | |||
| Common Voice | Open Source | 37 | |||
| In-house Data | In-house | 8,048 | |||
| Vietnamese (Vi) | GigaSpeech 2 | Open Source | 6,048 | 8,390 | 2.4% |
| Bud500 | Open Source | 324 | |||
| VLSP 2020 | Open Source | 101 | |||
| ViMD | Open Source | 81 | |||
| LSVSC | Open Source | 80 | |||
| Yodas | Open Source | 140 | |||
| Common Voice | Open Source | 2 | |||
| In-house Data | In-house | 1,614 | |||
| Indonesian (Id) | GigaSpeech 2 | Open Source | 6,352 | 8,238 | 2.4% |
| Yodas | Open Source | 442 | |||
| Common Voice | Open Source | 7 | |||
| In-house Data | In-house | 1,437 | |||
| French (Fr) | Multilingual LibriSpeech (MLS) | Open Source | 1,076 | 4,124 | 1.2% |
| Yodas | Open Source | 1,423 | |||
| Common Voice | Open Source | 831 | |||
| VoxPopuli | Open Source | 205 | |||
| In-house Data | In-house | 589 | |||
| Spanish (Es) | Multilingual LibriSpeech (MLS) | Open Source | 917 | 4,596 | 1.3% |
| Yodas | Open Source | 2,399 | |||
| Common Voice | Open Source | 502 | |||
| VoxPopuli | Open Source | 151 | |||
| In-house Data | In-house | 627 | |||
| Portuguese (Pt) | Multilingual LibriSpeech (MLS) | Open Source | 160 | 1,602 | 0.5% |
| Yodas | Open Source | 852 | |||
| Common Voice | Open Source | 25 | |||
| In-house Data | In-house | 565 |
Language totals from the same table:
| Language | Total Hours | Share |
|---|---|---|
| Chinese (Zh) | 129,265 | 37.1% |
| English (En) | 107,626 | 30.9% |
| Japanese (Ja) | 40,426 | 11.6% |
| Korean (Ko) | 20,095 | 5.8% |
| Russian (Ru) | 15,246 | 4.4% |
| Code-Switch | 8,924 | 2.6% |
| Vietnamese (Vi) | 8,390 | 2.4% |
| Indonesian (Id) | 8,238 | 2.4% |
| Spanish (Es) | 4,596 | 1.3% |
| French (Fr) | 4,124 | 1.2% |
| Portuguese (Pt) | 1,602 | 0.5% |
If you use this model in your research, please cite:
@article{liu2025tta,
title={TTA: Transcribe, Translate and Alignment for Cross-lingual Speech Representation},
author={Liu, Wei and Li, Jiahong and Shao, Yiwen and Yu, Dong},
journal={arXiv preprint arXiv:2511.14410},
year={2025}
}