squeezebert/squeezebert-uncased - LiteRT Optimized
This is a LiteRT (formerly TensorFlow Lite) export of squeezebert/squeezebert-uncased.
It is optimized for mobile and edge inference (Android/iOS/Embedded).
Model Details
| Attribute | Value |
|---|---|
| Task | Feature Extraction |
| Format | .tflite (Float32) |
| File Size | 192.0 MB |
| Input Length | 128 tokens |
| Output Dim | 768 |
Usage
import numpy as np
from ai_edge_litert.interpreter import Interpreter
from transformers import AutoTokenizer
# Load model
interpreter = Interpreter(model_path="squeezebert_squeezebert-uncased.tflite")
interpreter.allocate_tensors()
tokenizer = AutoTokenizer.from_pretrained("squeezebert/squeezebert-uncased")
def get_embedding(text):
inputs = tokenizer(text, max_length=128, padding="max_length", truncation=True, return_tensors="np")
input_details = interpreter.get_input_details()
interpreter.set_tensor(input_details[0]['index'], inputs['input_ids'].astype(np.int64))
interpreter.set_tensor(input_details[1]['index'], inputs['attention_mask'].astype(np.int64))
interpreter.invoke()
output_details = interpreter.get_output_details()
return interpreter.get_tensor(output_details[0]['index'])[0]
emb = get_embedding("Hello world")
print(f"Embedding shape: {emb.shape}")
Converted by Bombek1 using litert-torch
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Bombek1/squeezebert-uncased-litert
Base model
squeezebert/squeezebert-uncased