Chanisorn's picture
End of training
04e5d81 verified
---
language:
- th
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2452
- loss:MultipleNegativesRankingLoss
- thai
- semantic-search
- food
- ingredients
- retrieval
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: น้ำ, ปีกไก่, ไข่เป็ด, รากผักชี, อบเชย, โป๊ยกั๊ก, น้ำตาลมะพร้าว,
น้ำปลา, เกลือ, มะนาว, พริกขี้หนู, พริกจินดา, ผักชี
sentences:
- พะโล้ไข่เป็ดต้มแซ่บ
- ต้มยำซี่โครงหมู สูตรใส่คนอร์
- ชุดอาหารเช้า
- source_sentence: ข้าวสวย, หมึกกล้วย, หมูสับ, พริกแกง, น้ำปลา, น้ำตาลทราย, น้ำมันพืช,
ใบโหระพา, ใบมะกรูด, พริกชี้ฟ้าแดง, ผักชี, พริกแกงเขียวหวาน, กะทิ, น้ำปลา, น้ำตาลทราย
sentences:
- ไส้กรอกพันเบคอนซอสน้ำตก (เบทาโกร)
- ผักกาดขาวผัดไข่
- หมึกยัดไส้ข้าวผัดเขียวหวาน
- source_sentence: กะปิ, กุ้งแห้ง, พริกขี้หนูสวน, กระเทียมไทย, น้ำปลา, น้ำตาลปี๊บ,
น้ำมะนาว, น้ำเปล่า, ใบตอง, มะเขือพวง
sentences:
- น้ำพริกกะปิกุ้งแห้ง
- หมูสวรรค์
- แกงส้มผักรวมปลากระพง
- source_sentence: กล้วยไข่สุก, น้ำตาลทรายขาว, เกลือ, มะพร้าวอ่อน, ใบเตย
sentences:
- กล้วยไข่บวดชีมะพร้าวอ่อน
- เส้นใหญ่ผัดซีอิ๊วไก่
- หุง(นึ่ง)ข้าวเหนียว ด้วยไมโครเวฟ
- source_sentence: ปลาทูน่า, พริกขี้หนู, ไข่ไก่, น้ำปลา, เล็กน้อย, น้ำมันพืช
sentences:
- เจี๋ยนปลาทับทิม สูตร 2 น้ำมะขามเปียก
- ข้าวแต๋น
- ไข่เจียวทูน่าพริกสับ
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Thai Food Ingredients Dish Prediction
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: thai food eval
type: thai-food-eval
metrics:
- type: cosine_accuracy@1
value: 0.6052631578947368
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8421052631578947
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9605263157894737
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9736842105263158
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6052631578947368
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28070175438596484
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19210526315789467
name: Cosine Precision@5
- type: cosine_recall@1
value: 0.6052631578947368
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8421052631578947
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9605263157894737
name: Cosine Recall@5
- type: cosine_ndcg@10
value: 0.7948700328021918
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.735964912280702
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7371832358674465
name: Cosine Map@100
---
# Thai Food Ingredients → Dish Prediction
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 84fccfe766bcfd679e39efefe4ebf45af190ad2d -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** th
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("thai_food_prediction1")
# Run inference
sentences = [
'ปลาทูน่า, พริกขี้หนู, ไข่ไก่, น้ำปลา, เล็กน้อย, น้ำมันพืช',
'ไข่เจียวทูน่าพริกสับ',
'ข้าวแต๋น',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `thai-food-eval`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy@1 | 0.6053 |
| cosine_accuracy@3 | 0.8421 |
| cosine_accuracy@5 | 0.9605 |
| cosine_accuracy@10 | 0.9737 |
| cosine_precision@1 | 0.6053 |
| cosine_precision@3 | 0.2807 |
| cosine_precision@5 | 0.1921 |
| cosine_recall@1 | 0.6053 |
| cosine_recall@3 | 0.8421 |
| cosine_recall@5 | 0.9605 |
| **cosine_ndcg@10** | **0.7949** |
| cosine_mrr@10 | 0.736 |
| cosine_map@100 | 0.7372 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,452 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 29.15 tokens</li><li>max: 125 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.91 tokens</li><li>max: 22 tokens</li></ul> |
* Samples:
| anchor | positive |
|:-----------------------------------------------------------------------------------------------------------------------|:-------------------------|
| <code>ปลาหมึก, ซีอิ๊วดำ, ผงขมิ้น, น้ำปูนใส, กระเทียมสับ, รากผักชี, พริกแดง, น้ำตาลปี๊บ, เกลือ, น้ำปลา, น้ำมะนาว</code> | <code>ปลาหมึกย่าง</code> |
| <code>ไปตกหมึกมา อยากทำอะไรกินง่ายๆ ได้รสชาติของปลาหมึกแท้ๆ </code> | <code>ปลาหมึกย่าง</code> |
| <code>อยากกินปลาหมึกๆ ซีฟุ้ด อร่อยๆ</code> | <code>ปลาหมึกย่าง</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 76 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 76 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 47.42 tokens</li><li>max: 86 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.24 tokens</li><li>max: 20 tokens</li></ul> |
* Samples:
| anchor | positive |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------|
| <code>น้ำมันพืช, กระเทียม, น้ำตาลทราย, น้ำปลา, ซีอิ๊วขาว, ซอสปรุงรส, ซีอิ๊วดำเค็ม, น้ำส้มสายชู, พริกไทย, เส้นหมี่แห้ง, ลูกชิ้น, ถั่วงอก</code> | <code>หมี่คลุก</code> |
| <code>น้ำมัน, กระเทียม, หมูหมัก, เส้นใหญ่, ซีอิ้วดำ, คะน้า, กระหล่ำปลี, แครอท, ไข่เป็ด, ไข่ไก่, ผงปรุงรส, น้ำตาลทราย, ซอสหอยนางรม, ซอสปรุงรส, พริกไทย</code> | <code>ผัดซีอิ้วเส้นใหญ่</code> |
| <code>สะโพกหมู, น้ำตาลทราย, น้ำตาลปี๊บ, ซีอิ๊วขาว, เกลือ, น้ำเปล่า, ลูกผักชี, ยี่หร่า, กระเทียมไทย, สับละเอียด, น้ำมันพืช</code> | <code>หมูสวรรค์</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 24
- `per_device_eval_batch_size`: 24
- `learning_rate`: 5e-06
- `num_train_epochs`: 8
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 24
- `per_device_eval_batch_size`: 24
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-06
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 8
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | thai-food-eval_cosine_ndcg@10 |
|:-------:|:-------:|:-------------:|:---------------:|:-----------------------------:|
| 0.0971 | 10 | 3.2623 | - | - |
| 0.1942 | 20 | 2.7506 | - | - |
| 0.2913 | 30 | 2.45 | - | - |
| 0.3883 | 40 | 2.1205 | - | - |
| 0.4854 | 50 | 2.0216 | - | - |
| 0.5825 | 60 | 1.7865 | - | - |
| 0.6796 | 70 | 1.7075 | - | - |
| 0.7767 | 80 | 1.4338 | - | - |
| 0.8738 | 90 | 1.5122 | - | - |
| 0.9709 | 100 | 1.4975 | - | - |
| 1.0 | 103 | - | 1.0337 | 0.6411 |
| 1.0680 | 110 | 1.2398 | - | - |
| 1.1650 | 120 | 1.1619 | - | - |
| 1.2621 | 130 | 1.1641 | - | - |
| 1.3592 | 140 | 1.084 | - | - |
| 1.4563 | 150 | 0.992 | - | - |
| 1.5534 | 160 | 0.9877 | - | - |
| 1.6505 | 170 | 1.0527 | - | - |
| 1.7476 | 180 | 1.0431 | - | - |
| 1.8447 | 190 | 1.0235 | - | - |
| 1.9417 | 200 | 1.0231 | - | - |
| 2.0 | 206 | - | 0.6985 | 0.7429 |
| 2.0388 | 210 | 0.8387 | - | - |
| 2.1359 | 220 | 0.6738 | - | - |
| 2.2330 | 230 | 0.7837 | - | - |
| 2.3301 | 240 | 0.8629 | - | - |
| 2.4272 | 250 | 0.6708 | - | - |
| 2.5243 | 260 | 0.8917 | - | - |
| 2.6214 | 270 | 0.7686 | - | - |
| 2.7184 | 280 | 0.7352 | - | - |
| 2.8155 | 290 | 0.6844 | - | - |
| 2.9126 | 300 | 0.7821 | - | - |
| 3.0 | 309 | - | 0.6023 | 0.7508 |
| 3.0097 | 310 | 0.6968 | - | - |
| 3.1068 | 320 | 0.6536 | - | - |
| 3.2039 | 330 | 0.6157 | - | - |
| 3.3010 | 340 | 0.6562 | - | - |
| 3.3981 | 350 | 0.563 | - | - |
| 3.4951 | 360 | 0.6401 | - | - |
| 3.5922 | 370 | 0.6167 | - | - |
| 3.6893 | 380 | 0.5221 | - | - |
| 3.7864 | 390 | 0.5609 | - | - |
| 3.8835 | 400 | 0.6595 | - | - |
| 3.9806 | 410 | 0.5761 | - | - |
| 4.0 | 412 | - | 0.5541 | 0.7728 |
| 4.0777 | 420 | 0.4465 | - | - |
| 4.1748 | 430 | 0.4011 | - | - |
| 4.2718 | 440 | 0.4988 | - | - |
| 4.3689 | 450 | 0.5891 | - | - |
| 4.4660 | 460 | 0.6107 | - | - |
| 4.5631 | 470 | 0.5573 | - | - |
| 4.6602 | 480 | 0.5007 | - | - |
| 4.7573 | 490 | 0.4907 | - | - |
| 4.8544 | 500 | 0.4756 | - | - |
| 4.9515 | 510 | 0.5233 | - | - |
| 5.0 | 515 | - | 0.4831 | 0.7920 |
| 5.0485 | 520 | 0.4877 | - | - |
| 5.1456 | 530 | 0.5158 | - | - |
| 5.2427 | 540 | 0.4769 | - | - |
| 5.3398 | 550 | 0.4461 | - | - |
| 5.4369 | 560 | 0.4684 | - | - |
| 5.5340 | 570 | 0.347 | - | - |
| 5.6311 | 580 | 0.4203 | - | - |
| 5.7282 | 590 | 0.4448 | - | - |
| 5.8252 | 600 | 0.3725 | - | - |
| 5.9223 | 610 | 0.4598 | - | - |
| **6.0** | **618** | **-** | **0.4754** | **0.7938** |
| 6.0194 | 620 | 0.5246 | - | - |
| 6.1165 | 630 | 0.3768 | - | - |
| 6.2136 | 640 | 0.3567 | - | - |
| 6.3107 | 650 | 0.4294 | - | - |
| 6.4078 | 660 | 0.356 | - | - |
| 6.5049 | 670 | 0.4915 | - | - |
| 6.6019 | 680 | 0.3908 | - | - |
| 6.6990 | 690 | 0.3245 | - | - |
| 6.7961 | 700 | 0.4382 | - | - |
| 6.8932 | 710 | 0.4935 | - | - |
| 6.9903 | 720 | 0.4248 | - | - |
| 7.0 | 721 | - | 0.4928 | 0.7886 |
| 7.0874 | 730 | 0.2804 | - | - |
| 7.1845 | 740 | 0.3395 | - | - |
| 7.2816 | 750 | 0.3559 | - | - |
| 7.3786 | 760 | 0.4312 | - | - |
| 7.4757 | 770 | 0.3929 | - | - |
| 7.5728 | 780 | 0.3772 | - | - |
| 7.6699 | 790 | 0.3205 | - | - |
| 7.7670 | 800 | 0.3914 | - | - |
| 7.8641 | 810 | 0.4501 | - | - |
| 7.9612 | 820 | 0.4708 | - | - |
| 8.0 | 824 | - | 0.4766 | 0.7949 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 2.14.4
- Tokenizers: 0.21.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->