Thai Food Retriever with Nutrition
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: th
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("thai-food-mpnet-nutrition_2")
# Run inference
sentences = [
'กะปิ, ข้าวสวย, หมูสามชั้น, น้ำตาล, กระเทียม, สัปปะรด, กุนเชียง, ไข่ไก่, ไข่เค็ม, ปลาทู, ถั่วฝักยาว, หอมแดง, พริกขี้หนู, มะม่วง, กุ้งแห้ง, ผักชี, ซีอิ้วดำ | แคลอรี่:แคลมาก, โปรตีน:โปรตีนสูง, ไขมัน:ไขมันกลาง, คาร์บ:คาร์บสูง',
'ข้าวคลุกกะปิ',
'มันบดกระเทียมย่าง',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
thai-food-nutrition-eval - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.6458 |
| cosine_accuracy@3 | 0.7708 |
| cosine_accuracy@5 | 0.8542 |
| cosine_accuracy@10 | 0.9583 |
| cosine_precision@1 | 0.6458 |
| cosine_precision@3 | 0.2569 |
| cosine_precision@5 | 0.1708 |
| cosine_recall@1 | 0.6458 |
| cosine_recall@3 | 0.7708 |
| cosine_recall@5 | 0.8542 |
| cosine_ndcg@10 | 0.7926 |
| cosine_mrr@10 | 0.7407 |
| cosine_map@100 | 0.7421 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,572 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 34 tokens
- mean: 58.71 tokens
- max: 128 tokens
- min: 5 tokens
- mean: 10.0 tokens
- max: 22 tokens
- Samples:
anchor positive พริกแห้ง, หอมแดง, กระเทียม, น้ำมัน, หมูสับ, น้ำสะอาด, น้ำตาลปี๊บ, น้ำปลา, มะขามเปียกแคลอรี่:แคลมาก, โปรตีน:โปรตีนน้อย, ไขมัน:ไขมันสูง, คาร์บ:คาร์บกลาง มีพริิกแห้งเยอะมาก หอมแดง กระเทียม และอยากให้เป็นเมนูที่ใส่หมูสับเยอะๆๆแคลอรี่:แคลมาก, โปรตีน:โปรตีนน้อย, ไขมัน:ไขมันสูง, คาร์บ:คาร์บกลาง มีพริกแห้ง, หอมแดง, กระเทียม, หมูสับ ทำอะไรได้บ้างแคลอรี่:แคลมาก, โปรตีน:โปรตีนน้อย, ไขมัน:ไขมันสูง, คาร์บ:คาร์บกลาง - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 48 evaluation samples
- Columns:
anchorandpositive - Approximate statistics based on the first 48 samples:
anchor positive type string string details - min: 42 tokens
- mean: 71.1 tokens
- max: 112 tokens
- min: 4 tokens
- mean: 9.83 tokens
- max: 19 tokens
- Samples:
anchor positive หมูสับ, หนำเลี๊ยบ, ซีอิ๊วขาว, น้ำมันหอย, พริกไทย, กระเทียม, น้ำมัน, ผงปรุงรส, น้ำตาลทรายแคลอรี่:แคลมาก, โปรตีน:โปรตีนน้อย, ไขมัน:ไขมันสูง, คาร์บ:คาร์บกลาง ใบกะเพรา, เส้นสปาเก็ตตี้, เห็ด, เนื้อหมู, กุ้ง, ปลาหมึก, ผัก, พริก, กระเทียม, ซอสหอยนางรม, ซีอิ๊วขาว, น้ำปลา, ซีอิ๊วดำ, น้ำตาล, น้ำมันแคลอรี่:แคลมาก, โปรตีน:โปรตีนกลาง, ไขมัน:ไขมันสูง, คาร์บ:คาร์บน้อย ไข่ไก่, กุ้ง, ซีอิ้วขาว, น้ำมัน, พริกไทยแคลอรี่:แคลน้อย, โปรตีน:โปรตีนกลาง, ไขมัน:ไขมันน้อย, คาร์บ:คาร์บน้อย - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 24per_device_eval_batch_size: 24learning_rate: 5e-06num_train_epochs: 8warmup_ratio: 0.1load_best_model_at_end: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 24per_device_eval_batch_size: 24per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-06weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 8max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | thai-food-nutrition-eval_cosine_ndcg@10 |
|---|---|---|---|---|
| 0.1515 | 10 | 3.2223 | - | - |
| 0.3030 | 20 | 2.6833 | - | - |
| 0.4545 | 30 | 2.0425 | - | - |
| 0.6061 | 40 | 1.733 | - | - |
| 0.7576 | 50 | 1.5859 | - | - |
| 0.9091 | 60 | 1.526 | - | - |
| 1.0 | 66 | - | 1.4714 | 0.6588 |
| 1.0606 | 70 | 1.3475 | - | - |
| 1.2121 | 80 | 1.3117 | - | - |
| 1.3636 | 90 | 1.2059 | - | - |
| 1.5152 | 100 | 1.0191 | - | - |
| 1.6667 | 110 | 0.978 | - | - |
| 1.8182 | 120 | 1.0044 | - | - |
| 1.9697 | 130 | 0.9256 | - | - |
| 2.0 | 132 | - | 1.0963 | 0.7210 |
| 2.1212 | 140 | 0.6237 | - | - |
| 2.2727 | 150 | 0.8119 | - | - |
| 2.4242 | 160 | 0.7516 | - | - |
| 2.5758 | 170 | 0.8185 | - | - |
| 2.7273 | 180 | 0.7367 | - | - |
| 2.8788 | 190 | 0.7747 | - | - |
| 3.0 | 198 | - | 1.0376 | 0.7125 |
| 3.0303 | 200 | 0.7151 | - | - |
| 3.1818 | 210 | 0.6482 | - | - |
| 3.3333 | 220 | 0.6579 | - | - |
| 3.4848 | 230 | 0.729 | - | - |
| 3.6364 | 240 | 0.5395 | - | - |
| 3.7879 | 250 | 0.5708 | - | - |
| 3.9394 | 260 | 0.5773 | - | - |
| 4.0 | 264 | - | 0.9310 | 0.7597 |
| 4.0909 | 270 | 0.4705 | - | - |
| 4.2424 | 280 | 0.496 | - | - |
| 4.3939 | 290 | 0.4644 | - | - |
| 4.5455 | 300 | 0.4732 | - | - |
| 4.6970 | 310 | 0.5906 | - | - |
| 4.8485 | 320 | 0.4255 | - | - |
| 5.0 | 330 | 0.4799 | 0.8683 | 0.7795 |
| 5.1515 | 340 | 0.3249 | - | - |
| 5.3030 | 350 | 0.5088 | - | - |
| 5.4545 | 360 | 0.4819 | - | - |
| 5.6061 | 370 | 0.4046 | - | - |
| 5.7576 | 380 | 0.4829 | - | - |
| 5.9091 | 390 | 0.4504 | - | - |
| 6.0 | 396 | - | 0.8820 | 0.7925 |
| 6.0606 | 400 | 0.399 | - | - |
| 6.2121 | 410 | 0.3227 | - | - |
| 6.3636 | 420 | 0.3962 | - | - |
| 6.5152 | 430 | 0.391 | - | - |
| 6.6667 | 440 | 0.4882 | - | - |
| 6.8182 | 450 | 0.3662 | - | - |
| 6.9697 | 460 | 0.3808 | - | - |
| 7.0 | 462 | - | 0.8607 | 0.783 |
| 7.1212 | 470 | 0.349 | - | - |
| 7.2727 | 480 | 0.3512 | - | - |
| 7.4242 | 490 | 0.3958 | - | - |
| 7.5758 | 500 | 0.2765 | - | - |
| 7.7273 | 510 | 0.413 | - | - |
| 7.8788 | 520 | 0.4138 | - | - |
| 8.0 | 528 | - | 0.8727 | 0.7926 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- -
Model tree for Chanisorn/thai-food-mpnet-nutrition
Evaluation results
- Cosine Accuracy@1 on thai food nutrition evalself-reported0.646
- Cosine Accuracy@3 on thai food nutrition evalself-reported0.771
- Cosine Accuracy@5 on thai food nutrition evalself-reported0.854
- Cosine Accuracy@10 on thai food nutrition evalself-reported0.958
- Cosine Precision@1 on thai food nutrition evalself-reported0.646
- Cosine Precision@3 on thai food nutrition evalself-reported0.257
- Cosine Precision@5 on thai food nutrition evalself-reported0.171
- Cosine Recall@1 on thai food nutrition evalself-reported0.646
- Cosine Recall@3 on thai food nutrition evalself-reported0.771
- Cosine Recall@5 on thai food nutrition evalself-reported0.854