Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Vikhrmodels/Vikhr-7B-instruct_0.4
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 5ec7c0c178ba1b04_train_data.json
  ds_type: json
  field: prompt
  path: /workspace/input_data/
  split: train
  type: completion
ddp_find_unused_parameters: false
debug: null
deepspeed: null
early_stopping_patience: null
eps: 1.0e-06
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
gradient_normalization: true
greater_is_better: false
group_by_length: false
hub_model_id: CheapsetZero/24ade83e-027e-4383-8762-a809fb955437
learning_rate: 0.00024
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_nan_inf_filter: true
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1496
metric_for_best_model: eval_loss
micro_batch_size: 24
min_lr: 4.8e-05
mlflow_experiment_name: /tmp/5ec7c0c178ba1b04_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
reward_model_sampling_temperature: 0.7
s2_attention: null
sample_packing: false
save_total_limit: 3
saves_per_epoch: 4
sequence_len: 1024
skip_nan_gradients: true
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trl:
  adaptive_beta: true
  beta: 0.12
  entropy_coeff: 0.01
  gradient_normalization: true
  kl_monitoring: true
  max_completion_length: 1024
  num_generations: 7
  reward_funcs:
  - rewards_4ae4b631-baf3-48ba-908b-b393d1e81e48.reward_think_answer_format_normalized
  reward_weights:
  - 5.0
  target_kl: 0.01
  use_vllm: false
trust_remote_code: true
use_ema: false
use_peft: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: offline
wandb_name: 4ae4b631-baf3-48ba-908b-b393d1e81e48
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 4ae4b631-baf3-48ba-908b-b393d1e81e48
warmup_steps: 214
weight_decay: 0.01
xformers_attention: null

24ade83e-027e-4383-8762-a809fb955437

This model is a fine-tuned version of Vikhrmodels/Vikhr-7B-instruct_0.4 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00024
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 214
  • training_steps: 1496

Training results

Training Loss Epoch Step Validation Loss
0.0 0.0016 1 nan
0.0 0.2006 125 nan
0.0 0.4013 250 nan
0.0 0.6019 375 nan
0.0 0.8026 500 nan
0.0 1.0032 625 nan
0.0 1.2039 750 nan
0.0 1.4045 875 nan
0.0 1.6051 1000 nan
4.9718 1.8058 1125 nan
0.0 2.0064 1250 nan
0.0 2.2071 1375 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for CheapsetZero/24ade83e-027e-4383-8762-a809fb955437

Adapter
(202)
this model

Evaluation results