Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adam_epsilon: 1e-6
adapter: lora
base_model: Vikhrmodels/Vikhr-7B-instruct_0.4
bf16: true
chat_template: llama3
dataloader_num_workers: 0
dataloader_pin_memory: false
dataset_prepared_path: null
datasets:
- data_files:
  - bdadc8ad66cb9a94_train_data.json
  ds_type: json
  field: prompt
  path: /workspace/input_data/
  split: train
  type: completion
debug: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 2
flash_attention: false
fp16: false
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: CheapsetZero/3ab27b2c-001b-43ef-8445-1c972f2f32e0
hub_strategy: checkpoint
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.05
lora_r: 32
lora_target_linear: true
lr_scheduler: constant_with_warmup
max_steps: 4000
micro_batch_size: 16
mlflow_experiment_name: /tmp/bdadc8ad66cb9a94_train_data.json
model_type: AutoModelForCausalLM
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
sample_packing: false
save_safetensors: true
save_total_limit: 3
saves_per_epoch: 2
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
torch_compile: false
train_on_inputs: false
trl:
  beta: 0.1
  clip_rewards: true
  max_completion_length: 256
  normalize_rewards: true
  num_generations: 8
  reward_clip_value: 10.0
  reward_funcs:
  - rewards_463aed43-c37f-4627-a1e3-4087047e7890.reward_long_completions
  - rewards_463aed43-c37f-4627-a1e3-4087047e7890.reward_short_sentences
  - rewards_463aed43-c37f-4627-a1e3-4087047e7890.reward_low_syllables_per_word
  - rewards_463aed43-c37f-4627-a1e3-4087047e7890.reward_low_difficult_words_percentage
  - rewards_463aed43-c37f-4627-a1e3-4087047e7890.reward_high_readability
  reward_weights:
  - 9.78318096270829
  - 7.187549400576799
  - 1.1055886683328564
  - 0.17903499586198302
  - 8.012345598633374
  temperature: 1.0
  use_vllm: false
trust_remote_code: true
val_set_size: 0.05
wandb_mode: online
wandb_name: 463aed43-c37f-4627-a1e3-4087047e7890
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 463aed43-c37f-4627-a1e3-4087047e7890
warmup_steps: 100
weight_decay: 0.01
xformers_attention: false

3ab27b2c-001b-43ef-8445-1c972f2f32e0

This model is a fine-tuned version of Vikhrmodels/Vikhr-7B-instruct_0.4 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1646

Training results

Training Loss Epoch Step Validation Loss
No log 0.0006 1 nan
0.0 0.5 823 nan
0.0 1.0 1646 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for CheapsetZero/3ab27b2c-001b-43ef-8445-1c972f2f32e0

Adapter
(202)
this model

Evaluation results