See axolotl config
axolotl version: 0.4.1
adam_epsilon: 1e-6
adapter: lora
base_model: princeton-nlp/gemma-2-9b-it-SimPO
bf16: true
chat_template: llama3
dataloader_num_workers: 0
dataloader_pin_memory: false
dataset_prepared_path: null
datasets:
- data_files:
- 42edc46e3bc9550a_train_data.json
ds_type: json
field: prompt
path: /workspace/input_data/
split: train
type: completion
debug: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 2
flash_attention: false
fp16: false
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: CheapsetZero/5fd61e66-d570-4ed9-b3ce-cac0736ab7f5
hub_strategy: checkpoint
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_r: 16
lora_target_linear: true
lr_scheduler: constant_with_warmup
max_steps: 2000
micro_batch_size: 16
mlflow_experiment_name: /tmp/42edc46e3bc9550a_train_data.json
model_type: AutoModelForCausalLM
optimizer: paged_adamw_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
sample_packing: false
save_safetensors: true
save_total_limit: 3
saves_per_epoch: 2
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
torch_compile: false
train_on_inputs: false
trl:
beta: 0.1
clip_rewards: true
max_completion_length: 256
normalize_rewards: true
num_generations: 8
reward_clip_value: 10.0
reward_funcs:
- rewards_ddf9f2bf-a25d-4111-ba3d-47fd596ab0e5.reward_high_difficult_words_percentage
reward_weights:
- 7.222916551876711
temperature: 1.0
use_vllm: false
trust_remote_code: true
val_set_size: 0.05
wandb_mode: online
wandb_name: ddf9f2bf-a25d-4111-ba3d-47fd596ab0e5
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ddf9f2bf-a25d-4111-ba3d-47fd596ab0e5
warmup_steps: 100
weight_decay: 0.01
xformers_attention: false
5fd61e66-d570-4ed9-b3ce-cac0736ab7f5
This model is a fine-tuned version of princeton-nlp/gemma-2-9b-it-SimPO on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2771
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 100
- training_steps: 293
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 0.0034 | 1 | 4.3552 |
| 2.2696 | 0.5030 | 147 | 2.2771 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for CheapsetZero/5fd61e66-d570-4ed9-b3ce-cac0736ab7f5
Base model
google/gemma-2-9b
Finetuned
google/gemma-2-9b-it
Finetuned
princeton-nlp/gemma-2-9b-it-SimPO