File size: 3,803 Bytes
8b9b4e6
a0096ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b9b4e6
a0096ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b9b4e6
a2cfcb5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
language: en
license: mit
datasets:
- DDR
- FGADR
- IDRID
- MESSIDOR
- RETLES
library: torchSeg
model-index:
- name: unet_seresnext50_32x4d
  results:
  - task:
      type: image-segmentation
    dataset:
      name: IDRID
      type: IDRID
    metrics:
    - type: roc_auc
      value: 0.6701094508171082
      name: AUC Precision Recall - IDRID COTTON_WOOL_SPOT - COTTON_WOOL_SPOT
    - type: roc_auc
      value: 0.7860875129699707
      name: AUC Precision Recall - IDRID EXUDATES - EXUDATES
    - type: roc_auc
      value: 0.6743975877761841
      name: AUC Precision Recall - IDRID HEMORRHAGES - HEMORRHAGES
    - type: roc_auc
      value: 0.39846163988113403
      name: AUC Precision Recall - IDRID MICROANEURYSMS - MICROANEURYSMS
  - task:
      type: image-segmentation
    dataset:
      name: FGADR
      type: FGADR
    metrics:
    - type: roc_auc
      value: 0.4449217915534973
      name: AUC Precision Recall - FGADR COTTON_WOOL_SPOT - COTTON_WOOL_SPOT
    - type: roc_auc
      value: 0.6951484084129333
      name: AUC Precision Recall - FGADR EXUDATES - EXUDATES
    - type: roc_auc
      value: 0.6508341431617737
      name: AUC Precision Recall - FGADR HEMORRHAGES - HEMORRHAGES
    - type: roc_auc
      value: 0.2895563244819641
      name: AUC Precision Recall - FGADR MICROANEURYSMS - MICROANEURYSMS
  - task:
      type: image-segmentation
    dataset:
      name: MESSIDOR
      type: MESSIDOR
    metrics:
    - type: roc_auc
      value: 0.3307325839996338
      name: AUC Precision Recall - MESSIDOR COTTON_WOOL_SPOT - COTTON_WOOL_SPOT
    - type: roc_auc
      value: 0.7123324871063232
      name: AUC Precision Recall - MESSIDOR EXUDATES - EXUDATES
    - type: roc_auc
      value: 0.3926454186439514
      name: AUC Precision Recall - MESSIDOR HEMORRHAGES - HEMORRHAGES
    - type: roc_auc
      value: 0.4098129868507385
      name: AUC Precision Recall - MESSIDOR MICROANEURYSMS - MICROANEURYSMS
  - task:
      type: image-segmentation
    dataset:
      name: DDR
      type: DDR
    metrics:
    - type: roc_auc
      value: 0.5084977746009827
      name: AUC Precision Recall - DDR COTTON_WOOL_SPOT - COTTON_WOOL_SPOT
    - type: roc_auc
      value: 0.6117375493049622
      name: AUC Precision Recall - DDR EXUDATES - EXUDATES
    - type: roc_auc
      value: 0.5447860956192017
      name: AUC Precision Recall - DDR HEMORRHAGES - HEMORRHAGES
    - type: roc_auc
      value: 0.23405438661575317
      name: AUC Precision Recall - DDR MICROANEURYSMS - MICROANEURYSMS
  - task:
      type: image-segmentation
    dataset:
      name: RETLES
      type: RETLES
    metrics:
    - type: roc_auc
      value: 0.5254419445991516
      name: AUC Precision Recall - RETLES COTTON_WOOL_SPOT - COTTON_WOOL_SPOT
    - type: roc_auc
      value: 0.7039055824279785
      name: AUC Precision Recall - RETLES EXUDATES - EXUDATES
    - type: roc_auc
      value: 0.5196094512939453
      name: AUC Precision Recall - RETLES HEMORRHAGES - HEMORRHAGES
    - type: roc_auc
      value: 0.4127877354621887
      name: AUC Precision Recall - RETLES MICROANEURYSMS - MICROANEURYSMS
---
# Lesions Segmentation in Fundus

## Introduction 
We focus on the semantic segmentations of:

1. Cotton Wool Spot
2. Exudates
3. Hemmorrhages
4. Microaneurysms

For an easier use of the models, we refer to cleaned-up version of the code provided in the [fundus lesions toolkit](https://github.com/ClementPla/fundus-lesions-toolkit/tree/main/).

## Architecture

The model uses unet_seresnext50_32x4d as architecture. The implementation is taken from [torchSeg](https://github.com/isaaccorley/torchseg)

## Training datasets

The model was trained on the following datasets:
DDR, FGADR, IDRID, MESSIDOR, RETLES

## Resolution

The image resolution for training was set to 1024 x 1024.