sentiment-roberta-es-2025_II

This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0916
  • Accuracy: 0.3947
  • Precision: 0.3806
  • Recall: 0.3405
  • F1 Macro: 0.2015

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Macro
1.1116 1.0 31 1.0940 0.3885 0.1295 0.3333 0.1865
1.1025 2.0 62 1.0900 0.3885 0.1295 0.3333 0.1865
1.1003 3.0 93 1.0934 0.3722 0.1915 0.3210 0.1987
1.0943 4.0 124 1.0906 0.3926 0.4634 0.3375 0.1954
1.1003 5.0 155 1.0916 0.3947 0.3806 0.3405 0.2015
1.0964 6.0 186 1.0971 0.3906 0.4631 0.3354 0.1910
1.1015 7.0 217 1.0951 0.3865 0.1291 0.3316 0.1858
1.0944 8.0 248 1.0921 0.3865 0.1291 0.3316 0.1858
1.0957 9.0 279 1.0930 0.3865 0.1291 0.3316 0.1858
1.099 10.0 310 1.0938 0.3865 0.1291 0.3316 0.1858

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.1+cu130
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
9
Safetensors
Model size
0.6B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Danmo16/sentiment-roberta-es-2025_II

Finetuned
(868)
this model

Evaluation results