Constellation One

An experimental text classification model fine-tuned from Microsoft/DeBERTa-V3 base for Cockatoo

This model is licensed under the Apache-2.0 license.

Available Labels:

"id2label": {
    "0": "scam",
    "1": "violence",
    "2": "harassment",
    "3": "hate_speech",
    "4": "toxicity",
    "5": "obscenity"
}

Performance

Constellation One achieves a near-SOTA levels of performance within its weight class, specifically excelling in detecting scams and harassment.

By default, the model has very high recall values (~0.9) in all categories. After tuning threshold values, recall values will drop to ~0.81, but F1 will increase to ~0.74.

Evaluation (Untuned Thresholds):

Thresholds:

LABEL_THRESHOLDS = {
    'scam': 0.5,
    'violence': 0.5,
    'harassment': 0.5,
    'hate_speech': 0.5,
    'toxicity': 0.5,
    'obscenity': 0.5
}

Recall Metrics Precision Metrics F1 Metrics


Evaluation (Tuned Thresholds):

Thresholds:

LABEL_THRESHOLDS = {
    'scam': 0.60,
    'violence': 0.73,
    'harassment': 0.70,
    'hate_speech': 0.80,
    'toxicity': 0.75,
    'obscenity': 0.85
}

Recall Metrics Precision Metrics F1 Metrics


Resources:

Training/Inferencing server: https://github.com/DominicTWHV/Cockatoo_ML_Training/

Training Metrics: https://cockatoo.dev/ml-training.html

Datasets Used | Citations

Dataset License Link
Phishing Dataset MIT Hugging Face
Measuring Hate Speech CC-BY-4.0 Hugging Face
Tweet Eval (SemEval-2019) [See Citation]* Hugging Face
Toxic Chat CC-BY-NC-4.0 Hugging Face
Jigsaw Toxicity Apache-2.0 Hugging Face
Text Moderation Multilingual Apache-2.0 Hugging Face

Citation: ucberkeley-dlab/measuring-hate-speech

@article{kennedy2020constructing,
  title={Constructing interval variables via faceted Rasch measurement and multitask deep learning: a hate speech application},
  author={Kennedy, Chris J and Bacon, Geoff and Sahn, Alexander and von Vacano, Claudia},
  journal={arXiv preprint arXiv:2009.10277},
  year={2020}
}

Citation: cardiffnlp/tweet_eval

@inproceedings{basile-etal-2019-semeval,
    title = "{S}em{E}val-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in {T}witter",
    author = "Basile, Valerio and Bosco, Cristina and Fersini, Elisabetta and Nozza, Debora and Patti, Viviana and Rangel Pardo, Francisco Manuel and Rosso, Paolo and Sanguinetti, Manuela",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/S19-2007",
    doi = "10.18653/v1/S19-2007",
    pages = "54--63"
}

Citation: lmsys/toxic-chat

@misc{lin2023toxicchat,
      title={ToxicChat: Unveiling Hidden Challenges of Toxicity Detection in Real-World User-AI Conversation}, 
      author={Zi Lin and Zihan Wang and Yongqi Tong and Yangkun Wang and Yuxin Guo and Yujia Wang and Jingbo Shang},
      year={2023},
      eprint={2310.17389},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Citation: KoalaAI/Text-Moderation-Multilingual

@misc{text-moderation-large,
  title={Text-Moderation-Multilingual: A Multilingual Text Moderation Dataset},
  author={[KoalaAI]},
  year={2025},
  note={Aggregated from ifmain's and OpenAI's moderation datasets}
}
Downloads last month
19
Safetensors
Model size
0.2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for DominicTWHV/Constellation-One-Text

Finetuned
(525)
this model

Datasets used to train DominicTWHV/Constellation-One-Text

Papers for DominicTWHV/Constellation-One-Text