checkpoints_pln_xlm_roberta
This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1041
- F1 Macro: 0.1868
- F1 Weighted: 0.2182
- Accuracy: 0.3893
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | Accuracy |
|---|---|---|---|---|---|---|
| 1.1027 | 1.0 | 961 | 1.1027 | 0.1878 | 0.2211 | 0.3923 |
| 1.1143 | 2.0 | 1922 | 1.1028 | 0.1878 | 0.2211 | 0.3923 |
| 1.1108 | 3.0 | 2883 | 1.1037 | 0.1878 | 0.2211 | 0.3923 |
| 1.1098 | 4.0 | 3844 | 1.0995 | 0.1606 | 0.1529 | 0.3174 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 9
Model tree for Elkin5/checkpoints_pln_xlm_roberta
Base model
FacebookAI/xlm-roberta-large