|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from typing import Optional, Tuple, List, Union |
|
|
from transformers import PreTrainedModel |
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast |
|
|
from transformers import GenerationMixin |
|
|
from configuration_alinlight import AlinlightConfig |
|
|
|
|
|
class AlinlightRMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.eps = eps |
|
|
def forward(self, x): |
|
|
input_dtype = x.dtype |
|
|
x = x.to(torch.float32) |
|
|
variance = x.pow(2).mean(-1, keepdim=True) |
|
|
x = x * torch.rsqrt(variance + self.eps) |
|
|
return self.weight * x.to(input_dtype) |
|
|
|
|
|
class AlinlightRotaryEmbedding(nn.Module): |
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.base = base |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.scaling_factor = scaling_factor |
|
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim)) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self._set_cos_sin_cache(seq_len=max_position_embeddings, device=device, dtype=torch.get_default_dtype()) |
|
|
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
|
t = torch.arange(seq_len, device=device, dtype=torch.int64).type_as(self.inv_freq) |
|
|
t = t / self.scaling_factor |
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
def forward(self, x, seq_len=None): |
|
|
if seq_len > self.cos_cached.shape[0]: |
|
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
return self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype) |
|
|
|
|
|
def rotate_half(x): |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
class AlinlightMLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = nn.SiLU() |
|
|
|
|
|
def forward(self, x): |
|
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
class AlinlightAttention(nn.Module): |
|
|
def __init__(self, config, layer_idx: Optional[int] = None): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = self.hidden_size // self.num_heads |
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
self.sliding_window = config.sliding_window |
|
|
self.attention_dropout = config.attention_dropout |
|
|
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
|
|
def forward(self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, cos_sin=None): |
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
if cos_sin is not None: |
|
|
cos, sin = cos_sin |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
|
|
if past_key_value is not None: |
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
|
|
|
|
|
if self.sliding_window is not None and key_states.shape[2] > self.sliding_window: |
|
|
key_states = key_states[:, :, -self.sliding_window:, :] |
|
|
value_states = value_states[:, :, -self.sliding_window:, :] |
|
|
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
|
|
if self.num_key_value_groups > 1: |
|
|
key_states = key_states[:, :, None, :, :].expand(bsz, self.num_key_value_heads, self.num_key_value_groups, key_states.shape[-2], self.head_dim).reshape(bsz, self.num_heads, key_states.shape[-2], self.head_dim) |
|
|
value_states = value_states[:, :, None, :, :].expand(bsz, self.num_key_value_heads, self.num_key_value_groups, value_states.shape[-2], self.head_dim).reshape(bsz, self.num_heads, value_states.shape[-2], self.head_dim) |
|
|
|
|
|
|
|
|
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=None, dropout_p=0.0, is_causal=True) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size) |
|
|
return self.o_proj(attn_output), None, past_key_value |
|
|
|
|
|
class AlinlightDecoderLayer(nn.Module): |
|
|
def __init__(self, config, layer_idx: int): |
|
|
super().__init__() |
|
|
self.self_attn = AlinlightAttention(config, layer_idx=layer_idx) |
|
|
self.mlp = AlinlightMLP(config) |
|
|
self.input_layernorm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward(self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, cos_sin=None): |
|
|
residual = hidden_states |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
hidden_states, _, present_key_value = self.self_attn(hidden_states, attention_mask, position_ids, past_key_value, output_attentions, use_cache, cos_sin) |
|
|
hidden_states = residual + hidden_states |
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
return hidden_states, None, present_key_value |
|
|
|
|
|
class AlinlightModel(PreTrainedModel): |
|
|
config_class = AlinlightConfig |
|
|
def __init__(self, config: AlinlightConfig): |
|
|
super().__init__(config) |
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) |
|
|
self.layers = nn.ModuleList([AlinlightDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)]) |
|
|
self.norm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
scaling_factor = 1.0 |
|
|
if config.rope_scaling and config.rope_scaling.get("type") == "linear": |
|
|
scaling_factor = config.rope_scaling.get("factor", 1.0) |
|
|
|
|
|
self.rotary_emb = AlinlightRotaryEmbedding(config.hidden_size // config.num_attention_heads, max_position_embeddings=config.max_position_embeddings, base=config.rope_theta, scaling_factor=scaling_factor) |
|
|
|
|
|
def forward(self, input_ids=None, past_key_values=None, use_cache=None, **kwargs): |
|
|
if input_ids is not None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
else: |
|
|
inputs_embeds = kwargs.get("inputs_embeds") |
|
|
|
|
|
seq_len = inputs_embeds.shape[1] |
|
|
if past_key_values is not None: |
|
|
seq_len += past_key_values[0][0].shape[2] |
|
|
|
|
|
cos, sin = self.rotary_emb(inputs_embeds, seq_len=seq_len) |
|
|
|
|
|
position_ids = kwargs.get("position_ids") |
|
|
if position_ids is None: |
|
|
position_ids = torch.arange(seq_len - inputs_embeds.shape[1], seq_len, dtype=torch.long, device=inputs_embeds.device) |
|
|
position_ids = position_ids.unsqueeze(0).expand(inputs_embeds.shape[0], -1) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
next_decoder_cache = () if use_cache else None |
|
|
|
|
|
for idx, layer in enumerate(self.layers): |
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
layer_outputs = layer(hidden_states, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, cos_sin=(cos, sin)) |
|
|
hidden_states = layer_outputs[0] |
|
|
if use_cache: |
|
|
next_decoder_cache += (layer_outputs[2],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=next_decoder_cache |
|
|
) |
|
|
|
|
|
class AlinlightForCausalLM(PreTrainedModel, GenerationMixin): |
|
|
config_class = AlinlightConfig |
|
|
_keys_to_ignore_on_load_missing = ["model.rotary_emb.inv_freq"] |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = AlinlightModel(config) |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
self.lm_head.weight = self.model.embed_tokens.weight |
|
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): |
|
|
if past_key_values: |
|
|
input_ids = input_ids[:, -1:] |
|
|
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
|
if position_ids is None: |
|
|
if past_key_values: |
|
|
past_length = past_key_values[0][0].shape[2] |
|
|
position_ids = torch.tensor([[past_length]], dtype=torch.long, device=input_ids.device) |
|
|
else: |
|
|
position_ids = torch.arange(input_ids.shape[1], dtype=torch.long, device=input_ids.device).unsqueeze(0) |
|
|
|
|
|
return { |
|
|
"input_ids": input_ids, |
|
|
"past_key_values": past_key_values, |
|
|
"use_cache": True, |
|
|
"position_ids": position_ids |
|
|
} |
|
|
|
|
|
def forward(self, input_ids=None, past_key_values=None, labels=None, **kwargs): |
|
|
outputs = self.model(input_ids=input_ids, past_key_values=past_key_values, **kwargs) |
|
|
hidden_states = outputs.last_hidden_state |
|
|
logits = self.lm_head(hidden_states) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
loss = F.cross_entropy(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) |
|
|
|
|
|
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values) |