开源盘古 Ultra-MoE-718B

中文 | English

1. 简介

openPangu-Ultra-MoE-718B 是基于昇腾NPU从零训练的大规模混合专家语言模型,总参数量为718B,激活参数量为39B。openPangu-Ultra-MoE-718B 训练了约19T tokens,具备快慢思考融合能力。

2. 模型架构

openPangu-Ultra-MoE-718B 的模型架构采用了业界主流的Multi-head Latent Attention (MLA)、Multi-Token Prediction (MTP)、大稀疏比等架构,以及一些特有的设计:

  • Depth-Scaled Sandwich-Norm和TinyInit:通过调整层归一化结构与参数初始化,提升训练稳定性。
  • 基于EP-Group的负载均衡策略:通过优化负载均衡损失函数,改善专家特化效果。

3. 测评结果

测评集 测评指标 慢思考
通用能力
C-Eval Acc 91.06
CLUEWSC Acc 94.67
MMLU-Pro Exact Match 82.40
ArenaHard_v0.1 w/o Style Control 96.80
GPQA-Diamond Avg@4 76.77
SuperGPQA Acc 61.67
IF-Eval Prompt Strict 80.59
SysBench Constraint Satisfaction Rate 91.43
数学能力
CNMO 2024 Avg@32 80.73
AIME25 Avg@16 75.21
AIME24 Avg@16 80.21
MATH-500 Avg@1 97.40
代码能力
LiveCodeBench Avg@3 (01/25~05/25) 61.14
MBPP+ Avg@2 81.48

注: 评测过程中,system prompt 为空。

4. 部署和使用

4.1 环境准备

硬件规格

Atlas 800T A2 (64GB, >=32卡),驱动与固件安装包获取请参照[Atlas 800T A2]

软件环境

  • 方式一:基于裸机环境安装以下配套软件

    • 操作系统:Linux(推荐openEuler>=24.03)
    • CANN==8.1.RC1,安装准备及流程请参照[CANN Install]
    • python==3.10
    • torch==2.1.0
    • torch-npu==2.1.0.post12
    • transformers>=4.48.2
  • 方式二:从docker镜像启动容器

    参考[Docker使用指南]

以上软件配套经过验证,理论可以支持更高的版本,如有疑问,可以提交issue。

4.2 权重完整性校验

请参考以下方法对下载内容进行完整性校验,hash 值存储在 checklist.chk 文件中。

#!/usr/bin/env bash
ARCH=$(uname -m)
MODEL_PATH="${TARGET_FOLDER}/${MODEL_FOLDER_PATH}"
cd "$MODEL_PATH" || exit 1
if [ "$ARCH" = "arm64" ]; then
    sha256sum checklist.chk
else
    sha256sum -c checklist.chk
fi

4.3 推理权重转换

本次样例 openPangu-Ultra-MoE-718B 推理采用 Tensor Parallel 并行策略,叠加昇腾 NPU 融合大算子,需要提前对 safetensors 权重进行切分,下述内容提供32卡并行推理的权重切分示例,切分后的权重会保存在model/目录下:

cd inference
bash split_weight.sh

4.4 推理样例

openPangu-Ultra-MoE-718B 在 Atlas 800T A2 上4机32卡bfloat16推理示例,主节点选取节点IP0:

cd inference
# 主节点IP0:  ${NNODES} ${NODE_RANK} ${NPROC_PER_NODE} ${MASTER_ADDR} ${PROMPT}
bash generate.sh 4 0 8 IP0 "3*7=?"
# 从节点IP1
bash generate.sh 4 1 8 IP0 "3*7=?"
# 从节点IP2
bash generate.sh 4 2 8 IP0 "3*7=?"
# 从节点IP3
bash generate.sh 4 3 8 IP0 "3*7=?"

模型默认为慢思考模式,可以通过以下手段切换至快思考模式:如generate.py示例中fast_thinking_template所示,在用户输入结尾添加 /no_think标记可以将当前轮次切换至快思考模式。

4.5 使用推理框架

vllm_ascend:参考[vllm_ascend_for_openPangu_ultra_moe_718b]

5. 模型许可证

除文件中对开源许可证另有约定外,openPangu-Ultra-MoE-718B 模型根据 OPENPANGU MODEL LICENSE AGREEMENT VERSION 1.0 授权,旨在允许使用并促进人工智能技术的进一步发展。有关详细信息,请参阅模型存储库根目录中的 LICENSE 文件。

6. 免责声明

由于 openPangu-Ultra-MoE-718B (“模型”)所依赖的技术固有的限制,以及人工智能生成的内容是由盘古自动生成的,华为无法对以下事项做出任何保证:

  • 该模型的输出通过AI算法自动生成,不能排除某些信息可能存在缺陷、不合理或引起不适的可能性,生成的内容不代表华为的态度或立场;
  • 无法保证该模型100%准确、可靠、功能齐全、及时、安全、无错误、不间断、持续稳定或无任何故障;
  • 该模型的输出内容不构成任何建议或决策,也不保证生成的内容的真实性、完整性、准确性、及时性、合法性、功能性或实用性。生成的内容不能替代医疗、法律等领域的专业人士回答您的问题。生成的内容仅供参考,不代表华为的任何态度、立场或观点。您需要根据实际情况做出独立判断,华为不承担任何责任。

7. 反馈

如果有任何意见和建议,请提交issue或联系openPangu@huawei.com

Downloads last month
29
Safetensors
Model size
734B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including FreedomIntelligence/openPangu-Ultra-MoE-718B