distilbert-base-uncased-finetuned-emotions
This model is a fine-tuned version of distilbert-base-uncased on dair-ai/emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.1970
- Accuracy: 0.9425
- F1: 0.9426
Model description
distilbert-base-uncased base model finetuned on dair-ai/emotion dataset.
Intended uses
Can be used to classify emotions, sentiment analysis
Labels Mapping
0: Sadness π’
1: Joy π
2: Love β€οΈ
3: Anger π
4: Fear π¨
5: Surprise π²
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 0.0567 | 1.0 | 250 | 0.2055 | 0.9345 | 0.9348 |
| 0.0559 | 2.0 | 500 | 0.2037 | 0.9355 | 0.9358 |
| 0.067 | 3.0 | 750 | 0.1970 | 0.9425 | 0.9426 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 3
Model tree for Hashiru11/distilbert-base-uncased-finetuned-emotions
Base model
distilbert/distilbert-base-uncased