IsGarrido's picture
Upload version gender_classifier_multi_xlmroberta_large
385a809 verified
metadata
library_name: transformers
tags:
  - text-classification
  - modernbert
  - generated-data
base_model: xlm-roberta-large
metrics:
  - name: loss
    type: loss
    value: 0.4027690887451172
  - name: accuracy
    type: accuracy
    value: 0.883
  - name: f1
    type: f1
    value: 0.8826794072627964
  - name: precision
    type: precision
    value: 0.8852544531362957
  - name: recall
    type: recall
    value: 0.8831381197007152
  - name: runtime
    type: runtime
    value: 43.8849
  - name: samples_per_second
    type: samples_per_second
    value: 273.443
  - name: steps_per_second
    type: steps_per_second
    value: 34.18
  - name: epoch
    type: epoch
    value: 3

Gender Classifier (Fine-tuned xlm-roberta-large)

This model was fine-tuned to classify text into: male, female, neutral

Performance Metrics

Metric Value
loss 0.4028
accuracy 0.8830
f1 0.8827
precision 0.8853
recall 0.8831
runtime 43.8849
samples_per_second 273.4430
steps_per_second 34.1800
epoch 3.0000

Hyperparameters

  • Batch Size: 8
  • Learning Rate: 5e-05
  • Epochs: 3
  • Weight Decay: 0.01
  • Mixed Precision (FP16): True

Quick Usage

from transformers import pipeline

# Load the model directly from this folder or HF Hub
classifier = pipeline('text-classification', model='.')
print(classifier('She is a great engineer.'))