SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l-v2.0 on the all-nli dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l-v2.0
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("JatinkInnovision/snowflake-arctic-embed-l-v2.0_all-nli")
# Run inference
sentences = [
'A middle-aged man works under the engine of a train on rail tracks.',
'A guy is working on a train.',
'A guy is driving to work.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-test - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9558 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.9 tokens
- max: 52 tokens
- min: 6 tokens
- mean: 13.62 tokens
- max: 42 tokens
- min: 5 tokens
- mean: 14.76 tokens
- max: 55 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.A person is at a diner, ordering an omelette.Children smiling and waving at cameraThere are children presentThe kids are frowningA boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.The boy skates down the sidewalk. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 20.31 tokens
- max: 83 tokens
- min: 5 tokens
- mean: 10.71 tokens
- max: 35 tokens
- min: 5 tokens
- mean: 11.39 tokens
- max: 32 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.Two woman are holding packages.The men are fighting outside a deli.Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.Two kids in numbered jerseys wash their hands.Two kids in jackets walk to school.A man selling donuts to a customer during a world exhibition event held in the city of AngelesA man selling donuts to a customer.A woman drinks her coffee in a small cafe. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 50per_device_eval_batch_size: 50num_train_epochs: 1warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 50per_device_eval_batch_size: 50per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss | Validation Loss | all-nli-test_cosine_accuracy |
|---|---|---|---|---|
| 0.0090 | 100 | 1.8838 | 0.6502 | - |
| 0.0179 | 200 | 1.2991 | 0.6177 | - |
| 0.0269 | 300 | 1.2721 | 0.6417 | - |
| 0.0359 | 400 | 1.2265 | 0.7053 | - |
| 0.0448 | 500 | 1.0111 | 0.7147 | - |
| 0.0538 | 600 | 1.0491 | 0.7457 | - |
| 0.0627 | 700 | 1.0186 | 0.7922 | - |
| 0.0717 | 800 | 1.135 | 0.8940 | - |
| 0.0807 | 900 | 1.0747 | 0.7007 | - |
| 0.0896 | 1000 | 0.9373 | 0.7298 | - |
| 0.0986 | 1100 | 0.9572 | 0.6809 | - |
| 0.1076 | 1200 | 1.1316 | 0.7260 | - |
| 0.1165 | 1300 | 0.9188 | 0.7085 | - |
| 0.1255 | 1400 | 0.9554 | 0.6876 | - |
| 0.1344 | 1500 | 0.9494 | 0.7492 | - |
| 0.1434 | 1600 | 0.811 | 0.7234 | - |
| 0.1524 | 1700 | 0.7766 | 0.6744 | - |
| 0.1613 | 1800 | 0.9317 | 0.7178 | - |
| 0.1703 | 1900 | 0.9148 | 0.6960 | - |
| 0.1793 | 2000 | 0.8643 | 0.6642 | - |
| 0.1882 | 2100 | 0.7604 | 0.6425 | - |
| 0.1972 | 2200 | 0.776 | 0.6347 | - |
| 0.2061 | 2300 | 0.8286 | 0.6581 | - |
| 0.2151 | 2400 | 0.8946 | 0.5866 | - |
| 0.2241 | 2500 | 0.8507 | 0.6845 | - |
| 0.2330 | 2600 | 0.7917 | 0.6091 | - |
| 0.2420 | 2700 | 0.8192 | 0.7073 | - |
| 0.2510 | 2800 | 0.8818 | 0.6584 | - |
| 0.2599 | 2900 | 0.8261 | 0.6112 | - |
| 0.2689 | 3000 | 0.8017 | 0.6883 | - |
| 0.2779 | 3100 | 0.8147 | 0.6450 | - |
| 0.2868 | 3200 | 0.8297 | 0.6086 | - |
| 0.2958 | 3300 | 0.7516 | 0.5857 | - |
| 0.3047 | 3400 | 0.8628 | 0.6061 | - |
| 0.3137 | 3500 | 0.7758 | 0.5751 | - |
| 0.3227 | 3600 | 0.7773 | 0.6022 | - |
| 0.3316 | 3700 | 0.7559 | 0.5446 | - |
| 0.3406 | 3800 | 0.796 | 0.5842 | - |
| 0.3496 | 3900 | 0.8295 | 0.5822 | - |
| 0.3585 | 4000 | 0.7292 | 0.5821 | - |
| 0.3675 | 4100 | 0.7475 | 0.6358 | - |
| 0.3764 | 4200 | 0.7916 | 0.5688 | - |
| 0.3854 | 4300 | 0.7214 | 0.5653 | - |
| 0.3944 | 4400 | 0.704 | 0.5564 | - |
| 0.4033 | 4500 | 0.7817 | 0.5876 | - |
| 0.4123 | 4600 | 0.7549 | 0.5358 | - |
| 0.4213 | 4700 | 0.7206 | 0.5785 | - |
| 0.4302 | 4800 | 0.7462 | 0.5568 | - |
| 0.4392 | 4900 | 0.665 | 0.5765 | - |
| 0.4481 | 5000 | 0.7743 | 0.5303 | - |
| 0.4571 | 5100 | 0.7055 | 0.5733 | - |
| 0.4661 | 5200 | 0.7004 | 0.6280 | - |
| 0.4750 | 5300 | 0.7021 | 0.5444 | - |
| 0.4840 | 5400 | 0.6858 | 0.5787 | - |
| 0.4930 | 5500 | 0.7007 | 0.6124 | - |
| 0.5019 | 5600 | 0.6722 | 0.5705 | - |
| 0.5109 | 5700 | 0.7124 | 0.5440 | - |
| 0.5199 | 5800 | 0.6657 | 0.5262 | - |
| 0.5288 | 5900 | 0.6784 | 0.5400 | - |
| 0.5378 | 6000 | 0.6644 | 0.5093 | - |
| 0.5467 | 6100 | 0.7195 | 0.5453 | - |
| 0.5557 | 6200 | 0.6958 | 0.5216 | - |
| 0.5647 | 6300 | 0.7202 | 0.5250 | - |
| 0.5736 | 6400 | 0.6921 | 0.5089 | - |
| 0.5826 | 6500 | 0.6926 | 0.5207 | - |
| 0.5916 | 6600 | 0.714 | 0.5084 | - |
| 0.6005 | 6700 | 0.6605 | 0.4943 | - |
| 0.6095 | 6800 | 0.7222 | 0.5058 | - |
| 0.6184 | 6900 | 0.7171 | 0.4950 | - |
| 0.6274 | 7000 | 0.6344 | 0.5110 | - |
| 0.6364 | 7100 | 0.7057 | 0.5197 | - |
| 0.6453 | 7200 | 0.6895 | 0.5096 | - |
| 0.6543 | 7300 | 0.7226 | 0.4819 | - |
| 0.6633 | 7400 | 0.6725 | 0.4780 | - |
| 0.6722 | 7500 | 0.7469 | 0.5145 | - |
| 0.6812 | 7600 | 0.7016 | 0.4969 | - |
| 0.6901 | 7700 | 0.6655 | 0.4965 | - |
| 0.6991 | 7800 | 0.7281 | 0.4913 | - |
| 0.7081 | 7900 | 0.6748 | 0.5121 | - |
| 0.7170 | 8000 | 0.6505 | 0.5207 | - |
| 0.7260 | 8100 | 0.6594 | 0.4823 | - |
| 0.7350 | 8200 | 0.7042 | 0.4903 | - |
| 0.7439 | 8300 | 0.6995 | 0.4630 | - |
| 0.7529 | 8400 | 0.634 | 0.4217 | - |
| 0.7619 | 8500 | 0.3772 | 0.3684 | - |
| 0.7708 | 8600 | 0.3416 | 0.3585 | - |
| 0.7798 | 8700 | 0.3113 | 0.3471 | - |
| 0.7887 | 8800 | 0.2793 | 0.3379 | - |
| 0.7977 | 8900 | 0.2577 | 0.3349 | - |
| 0.8067 | 9000 | 0.249 | 0.3320 | - |
| 0.8156 | 9100 | 0.2191 | 0.3290 | - |
| 0.8246 | 9200 | 0.2492 | 0.3255 | - |
| 0.8336 | 9300 | 0.2464 | 0.3258 | - |
| 0.8425 | 9400 | 0.2288 | 0.3247 | - |
| 0.8515 | 9500 | 0.2132 | 0.3248 | - |
| 0.8604 | 9600 | 0.2173 | 0.3259 | - |
| 0.8694 | 9700 | 0.2008 | 0.3223 | - |
| 0.8784 | 9800 | 0.2016 | 0.3219 | - |
| 0.8873 | 9900 | 0.1962 | 0.3195 | - |
| 0.8963 | 10000 | 0.1952 | 0.3185 | - |
| 0.9053 | 10100 | 0.1959 | 0.3158 | - |
| 0.9142 | 10200 | 0.2002 | 0.3138 | - |
| 0.9232 | 10300 | 0.1882 | 0.3150 | - |
| 0.9322 | 10400 | 0.1856 | 0.3124 | - |
| 0.9411 | 10500 | 0.1971 | 0.3143 | - |
| 0.9501 | 10600 | 0.1918 | 0.3137 | - |
| 0.9590 | 10700 | 0.1825 | 0.3147 | - |
| 0.9680 | 10800 | 0.1762 | 0.3155 | - |
| 0.9770 | 10900 | 0.1778 | 0.3139 | - |
| 0.9859 | 11000 | 0.1659 | 0.3138 | - |
| 0.9949 | 11100 | 0.1848 | 0.3131 | - |
| 1.0 | 11157 | - | - | 0.9558 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Model tree for JatinkInnovision/snowflake-arctic-embed-l-v2.0_all-nli
Base model
Snowflake/snowflake-arctic-embed-l-v2.0