Model Card for Model ID
Provides AI status of 2025. Althought a lot of investment has been used in AI, AI applications arestill in its infancy.
Model Details
Model Description
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: Willam Hsu, John Xu
- Model type: Text Generation
Usage
The code of John1604/John1604-AI-status-2025 has been in the latest Hugging Face transformers version 4.55.4 and we advise you to use the latest version of transformers.
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "John1604/John1604-AI-status-2025"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input. If using chinese, use chinese prompt.
prompt = "What is the success rate of artificial intelligence projects now?"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=16384
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
content = tokenizer.decode(output_ids, skip_special_tokens=True)
print("content:", content)
This model can be run in vllm.
Direct Use from Langchain
import torch
from langchain.chains.llm import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_huggingface import HuggingFacePipeline
from transformers import pipeline
generate_text = pipeline(model="John1604/John1604-AI-status-2025", torch_dtype=torch.bfloat16,
trust_remote_code=True, device_map="auto", return_full_text=True)
prompt = PromptTemplate(
input_variables=["instruction"],
template="{instruction}")
# template for an instruction with input
prompt_with_context = PromptTemplate(
input_variables=["instruction", "context"],
template="{instruction}\n\nInput:\n{context}")
hf_pipeline = HuggingFacePipeline(pipeline=generate_text)
llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)
print(llm_chain.predict(instruction="List OWASP 10."))
input1 = "What is the success rate of artificial intelligence projects now?"
print(llm_context_chain.predict(instruction="When was George Washington president?", context=input1))
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[William Hsu, John Xu]
Model Card Contact
- Downloads last month
- 2