Keisyahsq/BC2GM_BERT

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0031
  • Validation Loss: 0.1601
  • Train Precision: 0.8543
  • Train Recall: 0.8713
  • Train F1: 0.8627
  • Train Accuracy: 0.9712
  • Epoch: 99

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 15620, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
0.1462 0.0941 0.7837 0.8515 0.8162 0.9639 0
0.0726 0.0885 0.8363 0.8419 0.8391 0.9680 1
0.0452 0.1000 0.8402 0.8563 0.8482 0.9689 2
0.0275 0.1060 0.8357 0.8658 0.8505 0.9689 3
0.0187 0.1246 0.8471 0.8662 0.8566 0.9691 4
0.0127 0.1268 0.8460 0.8725 0.8590 0.9703 5
0.0089 0.1451 0.8400 0.8780 0.8586 0.9702 6
0.0060 0.1555 0.8611 0.8558 0.8584 0.9713 7
0.0046 0.1541 0.8560 0.8732 0.8645 0.9713 8
0.0034 0.1601 0.8543 0.8713 0.8627 0.9712 9
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 10
0.0032 0.1601 0.8543 0.8713 0.8627 0.9712 11
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 12
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 13
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 14
0.0027 0.1601 0.8543 0.8713 0.8627 0.9712 15
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 16
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 17
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 18
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 19
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 20
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 21
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 22
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 23
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 24
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 25
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 26
0.0028 0.1601 0.8543 0.8713 0.8627 0.9712 27
0.0032 0.1601 0.8543 0.8713 0.8627 0.9712 28
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 29
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 30
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 31
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 32
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 33
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 34
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 35
0.0032 0.1601 0.8543 0.8713 0.8627 0.9712 36
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 37
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 38
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 39
0.0032 0.1601 0.8543 0.8713 0.8627 0.9712 40
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 41
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 42
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 43
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 44
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 45
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 46
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 47
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 48
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 49
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 50
0.0032 0.1601 0.8543 0.8713 0.8627 0.9712 51
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 52
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 53
0.0028 0.1601 0.8543 0.8713 0.8627 0.9712 54
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 55
0.0027 0.1601 0.8543 0.8713 0.8627 0.9712 56
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 57
0.0028 0.1601 0.8543 0.8713 0.8627 0.9712 58
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 59
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 60
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 61
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 62
0.0032 0.1601 0.8543 0.8713 0.8627 0.9712 63
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 64
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 65
0.0027 0.1601 0.8543 0.8713 0.8627 0.9712 66
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 67
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 68
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 69
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 70
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 71
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 72
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 73
0.0032 0.1601 0.8543 0.8713 0.8627 0.9712 74
0.0028 0.1601 0.8543 0.8713 0.8627 0.9712 75
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 76
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 77
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 78
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 79
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 80
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 81
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 82
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 83
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 84
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 85
0.0028 0.1601 0.8543 0.8713 0.8627 0.9712 86
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 87
0.0028 0.1601 0.8543 0.8713 0.8627 0.9712 88
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 89
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 90
0.0028 0.1601 0.8543 0.8713 0.8627 0.9712 91
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 92
0.0028 0.1601 0.8543 0.8713 0.8627 0.9712 93
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 94
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 95
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 96
0.0029 0.1601 0.8543 0.8713 0.8627 0.9712 97
0.0030 0.1601 0.8543 0.8713 0.8627 0.9712 98
0.0031 0.1601 0.8543 0.8713 0.8627 0.9712 99

Framework versions

  • Transformers 4.31.0
  • TensorFlow 2.10.1
  • Datasets 3.0.0
  • Tokenizers 0.13.3
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Keisyahsq/BC2GM_BERT

Finetuned
(6041)
this model