Keisyahsq/NCBI_BERT2

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0081
  • Validation Loss: 0.0888
  • Train Precision: 0.8281
  • Train Recall: 0.8908
  • Train F1: 0.8583
  • Train Accuracy: 0.9823
  • Epoch: 6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1690, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
0.1958 0.0731 0.7798 0.7967 0.7882 0.9769 0
0.0562 0.0681 0.8049 0.8796 0.8406 0.9812 1
0.0313 0.0745 0.7967 0.8664 0.8301 0.9797 2
0.0213 0.0753 0.8135 0.8954 0.8525 0.9816 3
0.0139 0.0813 0.8285 0.8836 0.8551 0.9826 4
0.0107 0.0824 0.8282 0.8849 0.8556 0.9825 5
0.0081 0.0888 0.8281 0.8908 0.8583 0.9823 6

Framework versions

  • Transformers 4.31.0
  • TensorFlow 2.10.1
  • Datasets 3.0.0
  • Tokenizers 0.13.3
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Keisyahsq/NCBI_BERT2

Finetuned
(6088)
this model