Keisyahsq/NCBI_BERT2
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0081
- Validation Loss: 0.0888
- Train Precision: 0.8281
- Train Recall: 0.8908
- Train F1: 0.8583
- Train Accuracy: 0.9823
- Epoch: 6
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1690, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
Training results
| Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
|---|---|---|---|---|---|---|
| 0.1958 | 0.0731 | 0.7798 | 0.7967 | 0.7882 | 0.9769 | 0 |
| 0.0562 | 0.0681 | 0.8049 | 0.8796 | 0.8406 | 0.9812 | 1 |
| 0.0313 | 0.0745 | 0.7967 | 0.8664 | 0.8301 | 0.9797 | 2 |
| 0.0213 | 0.0753 | 0.8135 | 0.8954 | 0.8525 | 0.9816 | 3 |
| 0.0139 | 0.0813 | 0.8285 | 0.8836 | 0.8551 | 0.9826 | 4 |
| 0.0107 | 0.0824 | 0.8282 | 0.8849 | 0.8556 | 0.9825 | 5 |
| 0.0081 | 0.0888 | 0.8281 | 0.8908 | 0.8583 | 0.9823 | 6 |
Framework versions
- Transformers 4.31.0
- TensorFlow 2.10.1
- Datasets 3.0.0
- Tokenizers 0.13.3
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Keisyahsq/NCBI_BERT2
Base model
google-bert/bert-base-uncased