Labira/LabiraPJOK_4_100_Full
This model is a fine-tuned version of Labira/LabiraPJOK_3_100_Full on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0114
- Validation Loss: 0.0019
- Epoch: 99
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
| Train Loss | Validation Loss | Epoch |
|---|---|---|
| 4.7082 | 1.0888 | 0 |
| 2.1015 | 0.9187 | 1 |
| 1.6691 | 0.7789 | 2 |
| 1.6319 | 0.6115 | 3 |
| 1.0958 | 0.5354 | 4 |
| 1.0045 | 0.4263 | 5 |
| 0.5512 | 0.2684 | 6 |
| 0.4544 | 0.2098 | 7 |
| 0.3825 | 0.1910 | 8 |
| 0.1953 | 0.1831 | 9 |
| 0.1976 | 0.1801 | 10 |
| 0.8616 | 0.1791 | 11 |
| 1.5897 | 2.3429 | 12 |
| 2.1748 | 2.0662 | 13 |
| 2.4636 | 1.7558 | 14 |
| 1.6550 | 1.4900 | 15 |
| 1.5978 | 1.3461 | 16 |
| 1.4202 | 1.2605 | 17 |
| 1.7664 | 1.1584 | 18 |
| 1.2947 | 1.0410 | 19 |
| 1.0935 | 0.9207 | 20 |
| 1.2261 | 0.7981 | 21 |
| 0.7240 | 0.6023 | 22 |
| 0.6482 | 0.4366 | 23 |
| 0.7506 | 0.3078 | 24 |
| 0.5547 | 0.2124 | 25 |
| 0.4757 | 0.1207 | 26 |
| 0.2835 | 0.0586 | 27 |
| 0.2399 | 0.0283 | 28 |
| 0.1450 | 0.0172 | 29 |
| 0.1593 | 0.0128 | 30 |
| 0.0375 | 0.0101 | 31 |
| 0.1237 | 0.0085 | 32 |
| 0.0495 | 0.0076 | 33 |
| 0.0962 | 0.0072 | 34 |
| 0.0260 | 0.0067 | 35 |
| 0.1116 | 0.0063 | 36 |
| 0.0955 | 0.0061 | 37 |
| 0.0384 | 0.0060 | 38 |
| 0.0141 | 0.0059 | 39 |
| 0.0106 | 0.0057 | 40 |
| 0.0565 | 0.0055 | 41 |
| 0.0118 | 0.0053 | 42 |
| 0.0166 | 0.0051 | 43 |
| 0.0240 | 0.0048 | 44 |
| 0.0127 | 0.0046 | 45 |
| 0.0323 | 0.0043 | 46 |
| 0.0109 | 0.0040 | 47 |
| 0.0164 | 0.0036 | 48 |
| 0.0268 | 0.0033 | 49 |
| 0.0268 | 0.0031 | 50 |
| 0.0127 | 0.0030 | 51 |
| 0.0090 | 0.0029 | 52 |
| 0.1247 | 0.0028 | 53 |
| 0.0192 | 0.0028 | 54 |
| 0.0093 | 0.0028 | 55 |
| 0.1175 | 0.0031 | 56 |
| 0.0146 | 0.0035 | 57 |
| 0.0101 | 0.0037 | 58 |
| 0.0116 | 0.0039 | 59 |
| 0.0085 | 0.0040 | 60 |
| 0.0095 | 0.0039 | 61 |
| 0.0252 | 0.0039 | 62 |
| 0.0539 | 0.0039 | 63 |
| 0.0112 | 0.0038 | 64 |
| 0.0254 | 0.0037 | 65 |
| 0.0130 | 0.0035 | 66 |
| 0.0128 | 0.0034 | 67 |
| 0.0071 | 0.0033 | 68 |
| 0.0101 | 0.0032 | 69 |
| 0.0107 | 0.0031 | 70 |
| 0.0093 | 0.0030 | 71 |
| 0.3929 | 0.0029 | 72 |
| 0.0199 | 0.0028 | 73 |
| 0.0072 | 0.0028 | 74 |
| 0.0147 | 0.0027 | 75 |
| 0.0116 | 0.0026 | 76 |
| 0.0151 | 0.0025 | 77 |
| 0.0094 | 0.0024 | 78 |
| 0.0135 | 0.0023 | 79 |
| 0.0122 | 0.0023 | 80 |
| 0.0116 | 0.0023 | 81 |
| 0.0120 | 0.0022 | 82 |
| 0.0167 | 0.0022 | 83 |
| 0.0092 | 0.0022 | 84 |
| 0.0096 | 0.0021 | 85 |
| 0.0127 | 0.0021 | 86 |
| 0.0168 | 0.0021 | 87 |
| 0.0171 | 0.0021 | 88 |
| 0.0287 | 0.0020 | 89 |
| 0.0120 | 0.0020 | 90 |
| 0.0181 | 0.0020 | 91 |
| 0.0137 | 0.0019 | 92 |
| 0.0198 | 0.0019 | 93 |
| 0.0120 | 0.0019 | 94 |
| 0.0095 | 0.0019 | 95 |
| 0.0144 | 0.0019 | 96 |
| 0.0070 | 0.0019 | 97 |
| 0.0057 | 0.0019 | 98 |
| 0.0114 | 0.0019 | 99 |
Framework versions
- Transformers 4.45.2
- TensorFlow 2.17.0
- Datasets 2.20.0
- Tokenizers 0.20.1
- Downloads last month
- -
Model tree for Labira/LabiraPJOK_4_100_Full
Base model
indolem/indobert-base-uncased
Finetuned
Labira/LabiraPJOK_1_100_Full
Finetuned
Labira/LabiraPJOK_2_100_Full
Finetuned
Labira/LabiraPJOK_3_100_Full