Labira/LabiraPJOK_5_100_Group
This model is a fine-tuned version of Labira/LabiraPJOK_4_100_Group on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0245
- Validation Loss: 0.0048
- Epoch: 99
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
| Train Loss | Validation Loss | Epoch |
|---|---|---|
| 5.0299 | 4.2579 | 0 |
| 3.9993 | 3.2863 | 1 |
| 3.5084 | 2.8872 | 2 |
| 3.1257 | 2.4304 | 3 |
| 2.6719 | 1.8348 | 4 |
| 2.0749 | 1.2511 | 5 |
| 1.8650 | 0.8881 | 6 |
| 1.2486 | 0.6654 | 7 |
| 1.1500 | 0.5810 | 8 |
| 0.8070 | 0.4871 | 9 |
| 0.6750 | 0.3621 | 10 |
| 0.5653 | 0.3742 | 11 |
| 0.4448 | 0.3147 | 12 |
| 0.3255 | 0.1682 | 13 |
| 0.2929 | 0.1691 | 14 |
| 0.2513 | 0.1638 | 15 |
| 0.2130 | 0.1555 | 16 |
| 0.2244 | 0.0776 | 17 |
| 0.1301 | 0.0292 | 18 |
| 0.1741 | 0.0287 | 19 |
| 0.1357 | 0.0739 | 20 |
| 0.1466 | 0.0305 | 21 |
| 0.1158 | 0.0236 | 22 |
| 0.2801 | 0.0214 | 23 |
| 0.0510 | 0.0284 | 24 |
| 0.1506 | 0.0392 | 25 |
| 0.1013 | 0.0402 | 26 |
| 0.0567 | 0.0399 | 27 |
| 0.0801 | 0.0260 | 28 |
| 0.1379 | 0.0202 | 29 |
| 0.0538 | 0.0241 | 30 |
| 0.0698 | 0.0216 | 31 |
| 0.0695 | 0.0186 | 32 |
| 0.0481 | 0.0122 | 33 |
| 0.0647 | 0.0108 | 34 |
| 0.0686 | 0.0087 | 35 |
| 0.0741 | 0.0088 | 36 |
| 0.0460 | 0.0095 | 37 |
| 0.0575 | 0.0128 | 38 |
| 0.1026 | 0.0207 | 39 |
| 0.0333 | 0.0315 | 40 |
| 0.0367 | 0.0299 | 41 |
| 0.0731 | 0.0215 | 42 |
| 0.0989 | 0.0162 | 43 |
| 0.0231 | 0.0125 | 44 |
| 0.0309 | 0.0095 | 45 |
| 0.0217 | 0.0087 | 46 |
| 0.0235 | 0.0086 | 47 |
| 0.0239 | 0.0102 | 48 |
| 0.0346 | 0.0117 | 49 |
| 0.0327 | 0.0118 | 50 |
| 0.0217 | 0.0101 | 51 |
| 0.0153 | 0.0080 | 52 |
| 0.0372 | 0.0066 | 53 |
| 0.0321 | 0.0069 | 54 |
| 0.0610 | 0.0076 | 55 |
| 0.0159 | 0.0117 | 56 |
| 0.0378 | 0.0137 | 57 |
| 0.0278 | 0.0118 | 58 |
| 0.0176 | 0.0101 | 59 |
| 0.0233 | 0.0083 | 60 |
| 0.0268 | 0.0081 | 61 |
| 0.0140 | 0.0083 | 62 |
| 0.0130 | 0.0077 | 63 |
| 0.0218 | 0.0072 | 64 |
| 0.0205 | 0.0071 | 65 |
| 0.0177 | 0.0074 | 66 |
| 0.0201 | 0.0078 | 67 |
| 0.0787 | 0.0108 | 68 |
| 0.0193 | 0.0120 | 69 |
| 0.0144 | 0.0115 | 70 |
| 0.0254 | 0.0098 | 71 |
| 0.0195 | 0.0082 | 72 |
| 0.0254 | 0.0069 | 73 |
| 0.0134 | 0.0057 | 74 |
| 0.0176 | 0.0050 | 75 |
| 0.0156 | 0.0048 | 76 |
| 0.0112 | 0.0048 | 77 |
| 0.0181 | 0.0047 | 78 |
| 0.0321 | 0.0046 | 79 |
| 0.0145 | 0.0048 | 80 |
| 0.0148 | 0.0053 | 81 |
| 0.0191 | 0.0059 | 82 |
| 0.0373 | 0.0066 | 83 |
| 0.0128 | 0.0072 | 84 |
| 0.0270 | 0.0073 | 85 |
| 0.0217 | 0.0071 | 86 |
| 0.0119 | 0.0067 | 87 |
| 0.0123 | 0.0063 | 88 |
| 0.0116 | 0.0059 | 89 |
| 0.0107 | 0.0056 | 90 |
| 0.0233 | 0.0054 | 91 |
| 0.0109 | 0.0053 | 92 |
| 0.0145 | 0.0051 | 93 |
| 0.0113 | 0.0050 | 94 |
| 0.0137 | 0.0049 | 95 |
| 0.0127 | 0.0049 | 96 |
| 0.0124 | 0.0048 | 97 |
| 0.0098 | 0.0048 | 98 |
| 0.0245 | 0.0048 | 99 |
Framework versions
- Transformers 4.45.2
- TensorFlow 2.17.0
- Datasets 2.20.0
- Tokenizers 0.20.1
- Downloads last month
- -