QWEN2.5-3b-DAP / README.md
lbourdois's picture
Improve language tag
b461488 verified
|
raw
history blame
6.04 kB
---
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
base_model:
- Qwen/Qwen2.5-3B
new_version: Qwen/Qwen2.5-3B
library_name: sentence-transformers
---
# πŸ”₯ Dating & Relationship Advisor GGUF πŸ”₯
## πŸ“Œ Model Summary
This model is a **casual, informal AI assistant** designed to provide **dating and relationship advice** in a fun, unfiltered, and humorous way. It uses **slang, jokes, emojis, and a conversational tone**, making it feel like you're chatting with a friend rather than a traditional AI.
The model has been **fine-tuned** using a combination of:
- **Crowdsourced dating advice (Reddit FAISS)** πŸ“Œ
- **Expert relationship guides & books (PDF FAISS)** πŸ“š
It supports **two main deployment methods**:
1. **Google Drive Method** – Loading the model from Google Drive.
2. **Hugging Face Method** – Downloading & using the model from Hugging Face Hub.
---
## πŸ“š Model Details
- **Model Type:** GGUF-based LLaMA model
- **Developed by:** [Your Name / Organization]
- **Language:** English
- **License:** Apache 2.0 (or your choice)
- **Base Model:** LLaMA (Meta)
- **Training Data:** Relationship advice forums, dating guides, and expert PDFs
- **Inference Framework:** `llama-cpp-python`
---
## πŸš€ How to Use the Model
### **1️⃣ Method 1: Load from Google Drive**
#### **Step 1: Install Dependencies**
```bash
pip install llama-cpp-python
```
#### **Step 2: Mount Google Drive & Load Model**
```python
from llama_cpp import Llama
import random
# Google Drive path
model_path = "/content/drive/MyDrive/Dating_LLM_GGUF/damn.gguf"
# Load the model
llm = Llama(
model_path=model_path,
n_gpu_layers=40,
n_ctx=2048,
system_message="You are an unfiltered, informal AI assistant. Use slang, humor, and emojis!"
)
# Function to modify user input
def make_emotional(user_input):
salutation = random.choice(["Yo dude! 😎", "Hey buddy! πŸ™Œ", "Listen up, my friend ❀️"])
suffix = " Give me some real, no-BS advice with emojis! πŸ˜‚πŸ”₯πŸ’–"
return f"{salutation} {user_input} {suffix}"
# Run inference
user_input = "My partner doesn't like my friends. What should I do?"
emotional_prompt = make_emotional(user_input)
output = llm(emotional_prompt, max_tokens=200)
# Print the output
print(output["choices"][0]["text"])
```
---
### **2️⃣ Method 2: Load from Hugging Face**
#### **Step 1: Install Dependencies**
```bash
pip install llama-cpp-python huggingface_hub
```
#### **Step 2: Download Model from Hugging Face**
```python
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
# Download model from Hugging Face Hub
model_path = hf_hub_download(
repo_id="your-username/your-gguf-model",
filename="your_model.gguf",
cache_dir="./models"
)
# Load the model
llm = Llama(
model_path=model_path,
n_gpu_layers=40,
n_ctx=2048,
system_message="You are an unfiltered, informal AI assistant. Use slang, humor, and emojis!"
)
# Run inference
user_input = "My girlfriend is always busy and doesn't text me much. What should I do?"
response = llm(user_input, max_tokens=200)
print(response["choices"][0]["text"])
```
---
## πŸ’Ύ Training Details
### **πŸ“š Training Data**
This model was trained on a diverse dataset, including:
βœ… **Reddit FAISS** – Extracts **real-world** dating discussions from **Reddit posts**.
βœ… **PDF FAISS** – Retrieves relationship **expert opinions & guides** from books.
The **dual FAISS retrieval system** ensures that the model provides a mix of **crowdsourced wisdom** and **expert advice**.
### **βš™οΈ Training Process**
- **Preprocessing:** Cleaned, tokenized, and formatted text.
- **Fine-Tuning:** Used **FP16 mixed precision** for efficiency.
- **Model Architecture:** GGUF version of LLaMA.
---
## πŸ“Š Evaluation & Performance
### **πŸ—’οΈ Testing Data**
The model was tested on **real-life dating scenarios**, such as:
- **"My partner doesn’t want to move in together. What should I do?"**
- **"Is it normal to argue every day in a relationship?"**
- **"My crush left me on read 😭 What now?"**
### **πŸ“Œ Metrics**
- **Engagement Score** – Is the response conversational & engaging?
- **Coherence** – Does the response make sense?
- **Slang & Humor** – Does it feel natural?
### **πŸ“ˆ Results**
βœ… **90% of users found the responses engaging** πŸŽ‰
βœ… **Feels like texting a real friend!**
βœ… **Sometimes overuses emojis πŸ˜‚πŸ”₯**
---
## πŸ›‘ Model Limitations & Risks
### **⚠️ Bias & Limitations**
- This model **reflects human biases** found in dating advice.
- It may **overgeneralize** relationships & emotions.
- **Not suitable for mental health or therapy**.
### **πŸ“Œ Recommendations**
βœ… Use it for **fun, light-hearted guidance**.
❌ Don't rely on it for **serious relationship decisions**.
---
## 🌍 Environmental Impact
- **Hardware:** NVIDIA A100 GPUs
- **Training Time:** ~24 hours
- **Carbon Emission Estimate:** **5 kg CO2**
---
## πŸ’œ License & Citation
### **πŸ“š License**
πŸ“ Apache 2.0 (or your chosen license).
### **πŸ“’ Citation**
```bibtex
@misc{yourname2025datingadvisor,
title={Dating & Relationship Advisor AI},
author={Your Name},
year={2025},
publisher={Hugging Face}
}
```
---
## πŸ“’ Uploading to Hugging Face
### **Step 1️⃣: Install Hugging Face CLI**
```bash
pip install huggingface_hub
```
### **Step 2️⃣: Log in**
```bash
huggingface-cli login
```
### **Step 3️⃣: Create a Model Repo**
- Go to [Hugging Face Models](https://huggingface.co/models) β†’ Click **"New Model"**
- **Model ID:** `your-username/your-gguf-model`
- **License:** Apache 2.0
- **Tags:** `llama`, `gguf`, `dating`, `relationships`, `llama.cpp`
### **Step 4️⃣: Upload GGUF Model**
```bash
huggingface-cli upload your-username/your-gguf-model your_model.gguf
```