roberta-sentiment-b8
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9068
- F1 Macro: 0.6681
- F1 Weighted: 0.6691
- Accuracy: 0.6750
- Precision Macro: 0.6663
- Recall Macro: 0.6751
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | Accuracy | Precision Macro | Recall Macro |
|---|---|---|---|---|---|---|---|---|
| 1.102 | 1.0 | 481 | 0.9877 | 0.4991 | 0.5058 | 0.5578 | 0.5790 | 0.5551 |
| 0.8244 | 2.0 | 962 | 0.7895 | 0.6638 | 0.6684 | 0.6670 | 0.6704 | 0.6604 |
| 0.6695 | 3.0 | 1443 | 0.8929 | 0.6413 | 0.6460 | 0.6618 | 0.6539 | 0.6606 |
| 0.5232 | 4.0 | 1924 | 0.8469 | 0.6808 | 0.6842 | 0.6878 | 0.6804 | 0.6833 |
| 0.4267 | 5.0 | 2405 | 1.0759 | 0.6749 | 0.6742 | 0.6691 | 0.6852 | 0.6732 |
| 0.3355 | 6.0 | 2886 | 1.6113 | 0.6693 | 0.6710 | 0.6712 | 0.6679 | 0.6729 |
| 0.2713 | 7.0 | 3367 | 1.8517 | 0.6690 | 0.6717 | 0.6722 | 0.6674 | 0.6717 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- -
Model tree for LeoCuadro/roberta-sentiment-b8
Base model
FacebookAI/xlm-roberta-large