roberta-sentiment / README.md
LeoCuadro's picture
End of training
8bd0826 verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: roberta-sentiment
    results: []

roberta-sentiment

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2590
  • F1 Macro: 0.6890
  • F1 Weighted: 0.6901
  • Accuracy: 0.6889
  • Precision Macro: 0.6897
  • Recall Macro: 0.6887

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Weighted Accuracy Precision Macro Recall Macro
1.0468 1.0 961 1.0346 0.5895 0.5948 0.5963 0.5980 0.5862
0.9324 2.0 1922 0.8973 0.6675 0.6697 0.6743 0.6670 0.6768
0.7848 3.0 2883 0.9689 0.6599 0.6632 0.6712 0.6624 0.6652
0.7983 4.0 3844 1.3608 0.6753 0.6805 0.6805 0.6889 0.6701
0.7084 5.0 4805 1.3093 0.6906 0.6922 0.6899 0.6938 0.6891
0.5763 6.0 5766 1.7146 0.6799 0.6830 0.6805 0.6857 0.6768
0.4508 7.0 6727 2.0875 0.6738 0.6773 0.6795 0.6770 0.6726
0.2905 8.0 7688 2.2861 0.6676 0.6700 0.6670 0.6709 0.6669

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1