File size: 3,097 Bytes
2fdb9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
language: en
license: apache-2.0
tags:
- sentiment-analysis
- transformers
- unknown
- text-classification
datasets:
- unknown
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: unknown-sentiment
  results:
  - task:
      type: text-classification
      name: Sentiment Analysis
    dataset:
      name: UNKNOWN
      type: unknown
    metrics:
    - type: accuracy
      value: 0.0000
      name: Test Accuracy
    - type: f1
      value: 0.0000
      name: F1 Score
    - type: precision
      value: 0.0000
      name: Precision
    - type: recall
      value: 0.0000
      name: Recall
---

# UNKNOWN Fine-tuned for Sentiment Analysis

## πŸ“Š Model Description

This model is a fine-tuned version of `unknown` for sentiment analysis on the UNKNOWN dataset.

**Model Architecture:** unknown  
**Task:** Binary Sentiment Classification (Positive/Negative)  
**Language:** English  
**Training Date:** N/A

## 🎯 Performance Metrics

| Metric | Score |
|--------|-------|
| **Accuracy** | 0.0000 |
| **F1 Score** | 0.0000 |
| **Precision** | 0.0000 |
| **Recall** | 0.0000 |
| **Loss** | 0.0000 |

## πŸ”§ Training Details

### Hyperparameters

```json
{}
```

### Dataset
- **Training samples:** N/A
- **Validation samples:** N/A
- **Test samples:** N/A

## πŸš€ Usage

### With Transformers Pipeline

```python
from transformers import pipeline

# Load the model
classifier = pipeline("sentiment-analysis", model="YOUR_USERNAME/YOUR_MODEL_NAME")

# Predict
result = classifier("I love this movie!")
print(result)
# [{'label': 'POSITIVE', 'score': 0.9998}]
```

### Manual Usage

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Load model and tokenizer
model_name = "YOUR_USERNAME/YOUR_MODEL_NAME"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# Prepare input
text = "This is an amazing product!"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)

# Predict
with torch.no_grad():
    outputs = model(**inputs)
    predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
    
# Get result
label_id = torch.argmax(predictions).item()
score = predictions[0][label_id].item()

labels = ["NEGATIVE", "POSITIVE"]
print(f"Label: {labels[label_id]}, Score: {score:.4f}")
```

## πŸ“ˆ Training Curves

Training history visualization is available in the model files.

## 🏷️ Label Mapping

```
0: NEGATIVE
1: POSITIVE
```

## βš™οΈ Model Configuration

```json
{}
```

## πŸ“ Citation

If you use this model, please cite:

```bibtex
@misc{sentiment-model-unknown,
  author = {Your Name},
  title = {unknown Fine-tuned for Sentiment Analysis},
  year = {2025},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/YOUR_USERNAME/YOUR_MODEL_NAME}}
}
```

## 🀝 Contact

For questions or feedback, please open an issue in the repository.

## πŸ“„ License

Apache 2.0

## πŸ”— Related Models

- [unknown](https://huggingface.co/unknown)

---

**Generated with MLflow tracking** πŸš€