qwen3vl-8b-lora
This is a LoRA adapter fine-tuned on top of Qwen/Qwen3-VL-8B-Instruct.
Model Description
This model is a fine-tuned version of Qwen3-VL-8B-Instruct using LoRA (Low-Rank Adaptation) for efficient training. The adapter weights can be merged with the base model for inference.
Training Details
Base Model
- Model: Qwen/Qwen3-VL-8B-Instruct
- Architecture: Vision-Language Model (VLM)
LoRA Configuration
- Rank (r): 64
- Alpha: 128
- Dropout: 0.05
- Target Modules: q_proj, k_proj, v_proj, o_proj
- Task Type: Causal Language Modeling
Training Hyperparameters
- Learning Rate: 1e-5
- Batch Size: 4 (per device)
- Gradient Accumulation Steps: 4
- Epochs: 2
- Optimizer: AdamW
- Weight Decay: 0
- Warmup Ratio: 0.03
- LR Scheduler: Cosine
- Max Gradient Norm: 1.0
- Model Max Length: 40960
- Max Pixels: 250880
- Min Pixels: 784
Training Infrastructure
- Framework: PyTorch + DeepSpeed (ZeRO Stage 2)
- Precision: BF16
- Gradient Checkpointing: Enabled
Usage
Requirements
pip install transformers peft torch pillow qwen-vl-utils
Loading the Model
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from peft import PeftModel
import torch
# Load base model
base_model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen3-VL-8B-Instruct",
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Load LoRA adapter
model = PeftModel.from_pretrained(
base_model,
"openhay/qwen3vl-8b-lora",
torch_dtype=torch.bfloat16
)
# Load processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen3-VL-8B-Instruct")
Inference Example
from qwen_vl_utils import process_vision_info
from PIL import Image
# Prepare messages
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "path/to/image.jpg"},
{"type": "text", "text": "Describe this image in detail."},
],
}
]
# Prepare for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Generate
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
print(output_text[0])
Merging LoRA Weights (Optional)
If you want to merge the LoRA weights into the base model for faster inference:
from transformers import Qwen2VLForConditionalGeneration
from peft import PeftModel
# Load base model and adapter
base_model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen3-VL-8B-Instruct",
torch_dtype=torch.bfloat16,
device_map="auto"
)
model = PeftModel.from_pretrained(base_model, "openhay/qwen3vl-8b-lora")
# Merge and save
merged_model = model.merge_and_unload()
merged_model.save_pretrained("./merged_model")
Limitations
- This model inherits all limitations from the base Qwen3-VL-8B-Instruct model
- Performance depends on the quality and domain of the fine-tuning dataset
- LoRA adapters may not capture all nuances that full fine-tuning would achieve
Citation
If you use this model, please cite:
@misc{qwen3vl_8b_lora,
author = {OpenHay},
title = {qwen3vl-8b-lora},
year = {2025},
publisher = {HuggingFace},
howpublished = {\url{https://huggingface.co/openhay/qwen3vl-8b-lora}}
}
Acknowledgements
- Base model: Qwen3-VL-8B-Instruct by Alibaba Cloud
- Training framework: LLaMA-Factory or similar
- LoRA implementation: PEFT by Hugging Face
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for OpenHay/BS1-MP1M-NOVISION-LR3e4-TRAINING-V2-PUBLIC-TEST-V2-NEW-DATASET-EP4
Base model
Qwen/Qwen3-VL-8B-Instruct