Matryoshka Representation Learning
Paper
•
2205.13147
•
Published
•
25
This is a sentence-transformers model finetuned from Qwen/Qwen3-Embedding-0.6B on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("PhilipCisco/qwen3-base-financial")
# Run inference
queries = [
"Which section of the financial document addresses Financial Statements and Supplementary Data?",
]
documents = [
'Financial Statements and Supplementary Data are addressed in Item 8 of the financial document.',
'The 7% Notes due 2029 are scheduled to mature on February 15, 2029.',
'The gift card liability was $145,014 in 2022 and increased to $164,930 in 2023.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 1024] [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.6634, 0.0292, -0.0534]])
dim_1024InformationRetrievalEvaluator with these parameters:{
"truncate_dim": 1024
}
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.7179 |
| cosine_accuracy@3 | 0.8536 |
| cosine_accuracy@5 | 0.8771 |
| cosine_accuracy@10 | 0.9207 |
| cosine_precision@1 | 0.7179 |
| cosine_precision@3 | 0.2845 |
| cosine_precision@5 | 0.1754 |
| cosine_precision@10 | 0.0921 |
| cosine_recall@1 | 0.7179 |
| cosine_recall@3 | 0.8536 |
| cosine_recall@5 | 0.8771 |
| cosine_recall@10 | 0.9207 |
| cosine_ndcg@10 | 0.8231 |
| cosine_mrr@10 | 0.7916 |
| cosine_map@100 | 0.7948 |
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
What was the increase in sales and marketing expenses for the year ended December 31, 2023 compared to 2022? |
Sales and marketing expenses increased by $42.5 million, or 6%, for the year ended December 31, 2023 compared to 2022. |
What method is used to provide information about legal proceedings in the Annual Report on Form 10-K? |
Information about legal proceedings in the Annual Report on Form 10-K is incorporated by reference under several notes and sections. |
How did selling, distribution, and administration expenses change in 2023 compared to previous years? |
In 2023, the decline in Selling, distribution and administration expense was driven by lower compensation expense associated with workforce reductions, lower costs for professional services and lower freight and warehousing expenses as a result of lower shipments during 2023. Additionally, Selling, distribution and administration expense in 2023 included $116.0 million of intangible asset impairment charges as compared to $281.0 million of intangible asset impairment charges in 2022. |
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024
],
"matryoshka_weights": [
1
],
"n_dims_per_step": -1
}
eval_strategy: epochper_device_train_batch_size: 4per_device_eval_batch_size: 4gradient_accumulation_steps: 8learning_rate: 2e-05num_train_epochs: 4lr_scheduler_type: cosinewarmup_ratio: 0.1bf16: Truetf32: Trueload_best_model_at_end: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 4per_device_eval_batch_size: 4per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 8eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Truelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 |
|---|---|---|---|
| -1 | -1 | - | 0.7762 |
| 0.0571 | 10 | 0.0102 | - |
| 0.1143 | 20 | 0.01 | - |
| 0.1714 | 30 | 0.002 | - |
| 0.2286 | 40 | 0.0162 | - |
| 0.2857 | 50 | 0.0015 | - |
| 0.3429 | 60 | 0.0064 | - |
| 0.4 | 70 | 0.0052 | - |
| 0.4571 | 80 | 0.0026 | - |
| 0.5143 | 90 | 0.0098 | - |
| 0.5714 | 100 | 0.0137 | - |
| 0.6286 | 110 | 0.0159 | - |
| 0.6857 | 120 | 0.0062 | - |
| 0.7429 | 130 | 0.0076 | - |
| 0.8 | 140 | 0.0046 | - |
| 0.8571 | 150 | 0.0341 | - |
| 0.9143 | 160 | 0.0032 | - |
| 0.9714 | 170 | 0.0051 | - |
| 1.0 | 175 | - | 0.7873 |
| 1.0286 | 180 | 0.0106 | - |
| 1.0857 | 190 | 0.0003 | - |
| 1.1429 | 200 | 0.0011 | - |
| 1.2 | 210 | 0.0017 | - |
| 1.2571 | 220 | 0.0081 | - |
| 1.3143 | 230 | 0.0005 | - |
| 1.3714 | 240 | 0.0185 | - |
| 1.4286 | 250 | 0.0008 | - |
| 1.4857 | 260 | 0.0034 | - |
| 1.5429 | 270 | 0.0042 | - |
| 1.6 | 280 | 0.0088 | - |
| 1.6571 | 290 | 0.0026 | - |
| 1.7143 | 300 | 0.0038 | - |
| 1.7714 | 310 | 0.0032 | - |
| 1.8286 | 320 | 0.0012 | - |
| 1.8857 | 330 | 0.0027 | - |
| 1.9429 | 340 | 0.0073 | - |
| 2.0 | 350 | 0.0033 | 0.8056 |
| 2.0571 | 360 | 0.0013 | - |
| 2.1143 | 370 | 0.0023 | - |
| 2.1714 | 380 | 0.0094 | - |
| 2.2286 | 390 | 0.0132 | - |
| 2.2857 | 400 | 0.0026 | - |
| 2.3429 | 410 | 0.0054 | - |
| 2.4 | 420 | 0.0035 | - |
| 2.4571 | 430 | 0.0019 | - |
| 2.5143 | 440 | 0.0003 | - |
| 2.5714 | 450 | 0.0059 | - |
| 2.6286 | 460 | 0.0006 | - |
| 2.6857 | 470 | 0.0004 | - |
| 2.7429 | 480 | 0.0102 | - |
| 2.8 | 490 | 0.0011 | - |
| 2.8571 | 500 | 0.0075 | - |
| 2.9143 | 510 | 0.013 | - |
| 2.9714 | 520 | 0.0022 | - |
| 3.0 | 525 | - | 0.8238 |
| 3.0286 | 530 | 0.0019 | - |
| 3.0857 | 540 | 0.0057 | - |
| 3.1429 | 550 | 0.0042 | - |
| 3.2 | 560 | 0.0008 | - |
| 3.2571 | 570 | 0.0001 | - |
| 3.3143 | 580 | 0.0015 | - |
| 3.3714 | 590 | 0.0175 | - |
| 3.4286 | 600 | 0.0006 | - |
| 3.4857 | 610 | 0.0003 | - |
| 3.5429 | 620 | 0.0056 | - |
| 3.6 | 630 | 0.002 | - |
| 3.6571 | 640 | 0.0091 | - |
| 3.7143 | 650 | 0.0009 | - |
| 3.7714 | 660 | 0.0011 | - |
| 3.8286 | 670 | 0.0001 | - |
| 3.8857 | 680 | 0.0014 | - |
| 3.9429 | 690 | 0.0019 | - |
| 4.0 | 700 | 0.0001 | 0.8231 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}