Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
10
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("PrabalAryal/Sentence_Transformer_v0.0.3")
# Run inference
sentences = [
'De verlichting van de gang werkt niet',
'Donker',
'Het raamglas is gebroken',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
BinaryClassificationEvaluator| Metric | Value |
|---|---|
| cosine_accuracy | 0.9692 |
| cosine_accuracy_threshold | 0.7461 |
| cosine_f1 | 0.969 |
| cosine_f1_threshold | 0.7461 |
| cosine_precision | 0.9773 |
| cosine_recall | 0.9608 |
| cosine_ap | 0.9925 |
| cosine_mcc | 0.9386 |
sentence_0, sentence_1, and label| sentence_0 | sentence_1 | label | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence_0 | sentence_1 | label |
|---|---|---|
Defect |
Lek |
1.0 |
Dakbedekking |
Weggewaaid |
1.0 |
Het slot werkt niet, de deur is geblokkeerd |
druppende kraan |
0.0 |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64num_train_epochs: 10fp16: Truemulti_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss | cosine_ap |
|---|---|---|---|
| 0.1992 | 103 | - | 0.7450 |
| 0.3985 | 206 | - | 0.8186 |
| 0.5977 | 309 | - | 0.8716 |
| 0.7969 | 412 | - | 0.9074 |
| 0.9671 | 500 | 4.302 | - |
| 0.9961 | 515 | - | 0.9307 |
| 1.0 | 517 | - | 0.9315 |
| 1.1954 | 618 | - | 0.9434 |
| 1.3946 | 721 | - | 0.9555 |
| 1.5938 | 824 | - | 0.9637 |
| 1.7930 | 927 | - | 0.9676 |
| 1.9342 | 1000 | 3.5031 | - |
| 1.9923 | 1030 | - | 0.9725 |
| 2.0 | 1034 | - | 0.9731 |
| 2.1915 | 1133 | - | 0.9741 |
| 2.3907 | 1236 | - | 0.9753 |
| 2.5899 | 1339 | - | 0.9802 |
| 2.7892 | 1442 | - | 0.9806 |
| 2.9014 | 1500 | 3.2728 | - |
| 2.9884 | 1545 | - | 0.9843 |
| 3.0 | 1551 | - | 0.9846 |
| 3.1876 | 1648 | - | 0.9839 |
| 3.3868 | 1751 | - | 0.9844 |
| 3.5861 | 1854 | - | 0.9847 |
| 3.7853 | 1957 | - | 0.9868 |
| 3.8685 | 2000 | 3.1567 | - |
| 3.9845 | 2060 | - | 0.9882 |
| 4.0 | 2068 | - | 0.9876 |
| 4.1838 | 2163 | - | 0.9880 |
| 4.3830 | 2266 | - | 0.9880 |
| 4.5822 | 2369 | - | 0.9887 |
| 4.7814 | 2472 | - | 0.9887 |
| 4.8356 | 2500 | 3.0525 | - |
| 4.9807 | 2575 | - | 0.9899 |
| 5.0 | 2585 | - | 0.9901 |
| 5.1799 | 2678 | - | 0.9896 |
| 5.3791 | 2781 | - | 0.9894 |
| 5.5783 | 2884 | - | 0.9904 |
| 5.7776 | 2987 | - | 0.9906 |
| 5.8027 | 3000 | 3.0061 | - |
| 5.9768 | 3090 | - | 0.9910 |
| 6.0 | 3102 | - | 0.9911 |
| 6.1760 | 3193 | - | 0.9904 |
| 6.3752 | 3296 | - | 0.9907 |
| 6.5745 | 3399 | - | 0.9915 |
| 6.7698 | 3500 | 2.9548 | - |
| 6.7737 | 3502 | - | 0.9915 |
| 6.9729 | 3605 | - | 0.9917 |
| 7.0 | 3619 | - | 0.9917 |
| 7.1721 | 3708 | - | 0.9912 |
| 7.3714 | 3811 | - | 0.9915 |
| 7.5706 | 3914 | - | 0.9916 |
| 7.7369 | 4000 | 2.9023 | - |
| 7.7698 | 4017 | - | 0.9917 |
| 7.9691 | 4120 | - | 0.9919 |
| 8.0 | 4136 | - | 0.9921 |
| 8.1683 | 4223 | - | 0.9919 |
| 8.3675 | 4326 | - | 0.9919 |
| 8.5667 | 4429 | - | 0.9925 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}