See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: princeton-nlp/gemma-2-9b-it-SimPO
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 8592c1ea48602073_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/8592c1ea48602073_train_data.json
type:
field_instruction: prompt_type
field_output: prompt_text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/5e625c14-7fe5-48e5-be2d-bfcc45cb0098
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1632
micro_batch_size: 2
mlflow_experiment_name: /tmp/8592c1ea48602073_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 2a33b1bd-08f1-47f5-913b-2f6e0416995b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2a33b1bd-08f1-47f5-913b-2f6e0416995b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
5e625c14-7fe5-48e5-be2d-bfcc45cb0098
This model is a fine-tuned version of princeton-nlp/gemma-2-9b-it-SimPO on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.4620
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1632
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 6.3156 | 0.0002 | 1 | 7.1915 |
| 3.0822 | 0.0243 | 150 | 3.3484 |
| 3.5996 | 0.0486 | 300 | 3.2806 |
| 2.5785 | 0.0730 | 450 | 3.1428 |
| 3.1221 | 0.0973 | 600 | 3.0337 |
| 2.2383 | 0.1216 | 750 | 2.9057 |
| 2.6724 | 0.1459 | 900 | 2.7932 |
| 2.8 | 0.1703 | 1050 | 2.6594 |
| 2.8065 | 0.1946 | 1200 | 2.5535 |
| 2.4628 | 0.2189 | 1350 | 2.4953 |
| 1.8401 | 0.2432 | 1500 | 2.4620 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for R0mAI/5e625c14-7fe5-48e5-be2d-bfcc45cb0098
Base model
google/gemma-2-9b
Finetuned
google/gemma-2-9b-it
Finetuned
princeton-nlp/gemma-2-9b-it-SimPO