See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-Math-7B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 558cfdb48600b41e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/558cfdb48600b41e_train_data.json
type:
field_instruction: prompt
field_output: GEITje-7B-ultra
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/6f8e7d56-3553-4fbe-92a5-5a73c973c4bb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00025
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1559
micro_batch_size: 4
mlflow_experiment_name: /tmp/558cfdb48600b41e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 5a5c8e10-0895-4d47-a614-1b9be2debb54
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 5a5c8e10-0895-4d47-a614-1b9be2debb54
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
6f8e7d56-3553-4fbe-92a5-5a73c973c4bb
This model is a fine-tuned version of unsloth/Qwen2.5-Math-7B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8565
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1559
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 4.9338 | 0.0007 | 1 | 4.8514 |
| 2.4075 | 0.0666 | 100 | 2.4401 |
| 2.1972 | 0.1333 | 200 | 2.2583 |
| 2.2582 | 0.1999 | 300 | 2.1521 |
| 2.1086 | 0.2666 | 400 | 2.0834 |
| 2.1456 | 0.3332 | 500 | 2.0299 |
| 2.0586 | 0.3998 | 600 | 1.9898 |
| 1.8993 | 0.4665 | 700 | 1.9587 |
| 1.9507 | 0.5331 | 800 | 1.9318 |
| 1.8808 | 0.5998 | 900 | 1.9093 |
| 1.8037 | 0.6664 | 1000 | 1.8934 |
| 1.8271 | 0.7330 | 1100 | 1.8785 |
| 1.9479 | 0.7997 | 1200 | 1.8684 |
| 1.8194 | 0.8663 | 1300 | 1.8615 |
| 2.0178 | 0.9329 | 1400 | 1.8578 |
| 1.6097 | 0.9996 | 1500 | 1.8565 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for R0mAI/6f8e7d56-3553-4fbe-92a5-5a73c973c4bb
Base model
Qwen/Qwen2.5-7B
Finetuned
Qwen/Qwen2.5-Math-7B
Finetuned
Qwen/Qwen2.5-Math-7B-Instruct
Finetuned
unsloth/Qwen2.5-Math-7B-Instruct