See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: princeton-nlp/gemma-2-9b-it-SimPO
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b122a855bc60610b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b122a855bc60610b_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 30
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/95f62437-4820-45c2-a547-34fac88d3eb6
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
micro_batch_size: 4
mlflow_experiment_name: /tmp/b122a855bc60610b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7157cbce-ebcf-4ad1-8604-0ad26ed1260f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7157cbce-ebcf-4ad1-8604-0ad26ed1260f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
95f62437-4820-45c2-a547-34fac88d3eb6
This model is a fine-tuned version of princeton-nlp/gemma-2-9b-it-SimPO on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0660
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 2.983 | 0.0013 | 1 | 3.1788 |
| 1.054 | 0.0653 | 50 | 1.1710 |
| 1.1699 | 0.1307 | 100 | 1.1397 |
| 1.0907 | 0.1960 | 150 | 1.1262 |
| 1.1104 | 0.2613 | 200 | 1.1141 |
| 1.0401 | 0.3266 | 250 | 1.1062 |
| 1.0968 | 0.3920 | 300 | 1.0985 |
| 1.0785 | 0.4573 | 350 | 1.0919 |
| 1.0792 | 0.5226 | 400 | 1.0861 |
| 0.9954 | 0.5879 | 450 | 1.0807 |
| 1.1625 | 0.6533 | 500 | 1.0758 |
| 1.1131 | 0.7186 | 550 | 1.0724 |
| 1.137 | 0.7839 | 600 | 1.0693 |
| 1.1217 | 0.8493 | 650 | 1.0672 |
| 1.0933 | 0.9146 | 700 | 1.0663 |
| 0.9518 | 0.9799 | 750 | 1.0660 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for R0mAI/95f62437-4820-45c2-a547-34fac88d3eb6
Base model
google/gemma-2-9b
Finetuned
google/gemma-2-9b-it
Finetuned
princeton-nlp/gemma-2-9b-it-SimPO