See axolotl config
axolotl version: 0.12.1
base_model: aisingapore/Gemma-SEA-LION-v4-27B-IT
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
skip_prepare_dataset: false
remove_unused_columns: false
sample_packing: false
ddp_find_unused_parameters: true
deepspeed: deepspeed_configs/zero3.json
chat_template: gemma3
eot_tokens:
- <end_of_turn>
datasets:
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_textcaps_EN_SEA
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_xm3600_EN_SEA
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_xflickr_EN_SEA_chunk_1
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_xflickr_EN_SEA_chunk_2
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_xflickr_EN_SEA_chunk_3
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_xflickr_EN_SEA_chunk_4
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_xflickr_EN_SEA_chunk_5
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_xflickr_EN_SEA_chunk_6
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_xflickr_EN_SEA_chunk_7
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_xflickr_EN_SEA_chunk_8
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_xflickr_EN_SEA_chunk_9
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_xflickr_EN_SEA_chunk_10
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_sea_vl_EN_SEA_chunk_1
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_sea_vl_EN_SEA_chunk_2
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_sea_vl_EN_SEA_chunk_3
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_sea_vl_EN_SEA_chunk_4
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_sea_vl_EN_SEA_chunk_5
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_sea_vl_EN_SEA_chunk_6
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_sea_vl_EN_SEA_chunk_7
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_sea_vl_EN_SEA_chunk_8
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_sea_vl_EN_SEA_chunk_9
type: chat_template
split: train
field_messages: messages
- path: /mnt/weka/all/holy/translation_parallel/pretrain_dataset_sea_vl_EN_SEA_chunk_10
type: chat_template
split: train
field_messages: messages
dataset_prepared_path: peerat_test_path
val_set_size: 0.01
output_dir: ./outputs-pt/sealion-v4-gemma-3-27b-hero_pre_train_v2
sequence_len: 2048
pad_to_sequence_len: false
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
bf16: true
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: false
# attn_implementation: sdpa
warmup_ratio: 0.1
evals_per_epoch: 1
save_steps: 1000
save_total_limit: 3
weight_decay: 0.0
# save_first_step: true # uncomment this to validate checkpoint saving works with your config
outputs-pt/sealion-v4-gemma-3-27b-hero_pre_train_v2
This model is a fine-tuned version of aisingapore/Gemma-SEA-LION-v4-27B-IT on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 80
- gradient_accumulation_steps: 2
- total_train_batch_size: 640
- total_eval_batch_size: 320
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1156
- training_steps: 11568
Training results
Framework versions
- Transformers 4.55.0
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 1
Model tree for SEACrowd/SEA-LION-VL-100226
Base model
google/gemma-3-27b-pt
Finetuned
google/gemma-3-27b-it
Finetuned
aisingapore/Gemma-SEA-LION-v4-27B
Finetuned
aisingapore/Gemma-SEA-LION-v4-27B-IT