PyTorch
qwen2_5_vl
File size: 6,769 Bytes
1297bc9
 
 
 
 
 
fa821e1
 
 
 
 
 
e4330b8
fa821e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533a0eb
 
 
 
 
 
fa821e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
license: apache-2.0
datasets:
- ShaoRun/RS-EoT-4K
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
---

# RS-EoT-7B: Remote Sensing Evidence-of-Thought

<div align="center">

[**🌐 Project Website**](https://geox-lab.github.io/Asking_like_Socrates/) | [**πŸ’» GitHub Repository**](https://github.com/GeoX-Lab/Asking_like_Socrates) | [**πŸ“„ Paper (ArXiv)**](https://arxiv.org/abs/2511.22396) | [**πŸ€— Dataset (RS-EoT-4K)**](https://huggingface.co/datasets/ShaoRun/RS-EoT-4K)

</div>

## πŸ“– Introduction

**RS-EoT-7B** is a multimodal reasoning model tailored for Remote Sensing (RS) imagery. It introduces the **Evidence-of-Thought (EoT)** paradigm to mitigate the "Glance Effect"β€”a phenomenon where models hallucinate reasoning without genuinely inspecting visual evidence.

Unlike standard VLMs that rely on a single coarse perception, RS-EoT-7B employs an iterative evidence-seeking mechanism. It has been trained using a two-stage pipeline:
1.  **SFT Cold-Start**: Supervised Fine-Tuning on the **RS-EoT-4K** dataset (synthesized via SocraticAgent) to instill the iterative reasoning pattern.
2.  **Progressive RL**: Reinforcement Learning on Fine-grained Grounding and General VQA tasks to enhance evidence-seeking capabilities and generalize to broader scenarios.

## πŸ› οΈ Quick Start

### Installation

Ensure you have the latest `transformers` and `qwen-vl-utils` installed:

```bash
pip install transformers
pip install qwen-vl-utils
````

### 1\. Visual Question Answering (VQA)

This example demonstrates how to ask the model a question and receive a reasoning-backed answer.

```python
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch

# Load model and processor
model_name = "ShaoRun/RS-EoT-7B"
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    model_name, torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained(model_name)

# Define input image (assumes demo.jpg is in the current directory)
image_path = "./demo.jpg" 

messages = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": image_path},
            {"type": "text", "text": "How many cars in this image?"},
        ],
    }
]

# Preparation for inference
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

# Inference
generated_ids = model.generate(**inputs, max_new_tokens=4096)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)

print(output_text[0])
```

### 2\. Visual Grounding with Visualization

This example shows how to perform visual grounding and visualize the output bounding boxes.

```python
import re
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info

# --- Helper Functions for Parsing and Visualization ---

def extract_bbox_list_in(text: str) -> list[list[float]]:
    """Extracts bounding boxes from the model output text."""
    boxes = []
    text = re.sub(r'\\([{}\[\]":,])', r'\1', text)
    # Pattern to find lists of numbers like [x1, y1, x2, y2]
    pattern = re.compile(r'\[\s*(.*?)\s*\]', flags=re.IGNORECASE | re.DOTALL)
    matches = pattern.findall(text)
    
    number_pattern = r'-?\d+\.\d+|-?\d+'
    for match in matches:
        nums = re.findall(number_pattern, match)
        if len(nums) >= 4:
            # Take the first 4 numbers as the box
            box = [float(num) for num in nums[:4]]
            boxes.append(box)
    return boxes

def visualize_bboxes(img: Image.Image, boxes: list[list[float]], color=(0, 255, 0), width=3) -> Image.Image:
    """Draws bounding boxes on the image."""
    out = img.copy()
    draw = ImageDraw.Draw(out)
    W, H = img.size
    
    for b in boxes:
        if len(b) < 4: continue
        x1, y1, x2, y2 = b[:4]
        
        # Ensure coordinates are within bounds
        x1, y1 = max(0, min(W-1, x1)), max(0, min(H-1, y1))
        x2, y2 = max(0, min(W-1, x2)), max(0, min(H-1, y2))
        
        # Draw rectangle with thickness
        draw.rectangle([x1, y1, x2, y2], outline=color, width=width)
        
    return out

# --- Main Inference Code ---

model_name = "ShaoRun/RS-EoT-7B"
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    model_name, torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained(model_name)

# Load Image
image_path = "./demo.jpg"
image = Image.open(image_path).convert('RGB')

messages = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": image},
            {"type": "text", "text": 'Locate the black car parked on the right in the remote sensing image. Return the coordinates as "[x1, y1, x2, y2]".'},
        ],
    }
]

# Process Inputs
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

# Generate
generated_ids = model.generate(**inputs, max_new_tokens=4096)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
response = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]

print(f"Model Response:\n{response}")

# Parse and Visualize
answer_part = response.split("</think>")[-1] 
detection = extract_bbox_list_in(answer_part)

if detection:
    print(f"Detected BBoxes: {detection}")
    vis_img = visualize_bboxes(image, detection)
    vis_img.save("./res.jpg")
    print("Visualization saved to ./res.jpg")
else:
    print("No bounding boxes detected in the response.")
```

## πŸ–ŠοΈ Citation

If you use this model in your research, please cite our paper:

```bibtex
@article{shao2025asking,
  title={Asking like Socrates: Socrates helps VLMs understand remote sensing images},
  author={Shao, Run and Li, Ziyu and Zhang, Zhaoyang and Xu, Linrui and He, Xinran and Yuan, Hongyuan and He, Bolei and Dai, Yongxing and Yan, Yiming and Chen, Yijun and others},
  journal={arXiv preprint arXiv:2511.22396},
  year={2025}
}
```