october-finetuning-more-variables-sweep-20251012-193706-t02

Slur reclamation binary classifier
Task: LGBTQ+ reclamation vs non-reclamation use of harmful words on social media text.

Trial timestamp (UTC): 2025-10-12 19:37:06

Data case: en-es-it

Configuration (trial hyperparameters)

Model: Alibaba-NLP/gte-multilingual-base

Hyperparameter Value
LANGUAGES en-es-it
LR 1e-05
EPOCHS 5
MAX_LENGTH 256
USE_BIO False
USE_LANG_TOKEN False
GATED_BIO False
FOCAL_LOSS True
FOCAL_GAMMA 2.5
USE_SAMPLER False
R_DROP True
R_KL_ALPHA 0.5
TEXT_NORMALIZE True

Dev set results (summary)

Metric Value
f1_macro_dev_0.5 0.7265709173014043
f1_weighted_dev_0.5 0.8606644314617744
accuracy_dev_0.5 0.8552338530066815
f1_macro_dev_best_global 0.7265709173014043
f1_weighted_dev_best_global 0.8606644314617744
accuracy_dev_best_global 0.8552338530066815
f1_macro_dev_best_by_lang 0.6952488687782805
f1_weighted_dev_best_by_lang 0.8306311662921121
accuracy_dev_best_by_lang 0.8129175946547884
default_threshold 0.5
best_threshold_global 0.5
thresholds_by_lang {"en": 0.4, "it": 0.5, "es": 0.45000000000000007}

Thresholds

  • Default: 0.5
  • Best global: 0.5
  • Best by language: { "en": 0.4, "it": 0.5, "es": 0.45000000000000007 }

Detailed evaluation

Classification report @ 0.5

              precision    recall  f1-score   support

 no-recl (0)     0.9301    0.8987    0.9141       385
    recl (1)     0.4935    0.5938    0.5390        64

    accuracy                         0.8552       449
   macro avg     0.7118    0.7462    0.7266       449
weighted avg     0.8679    0.8552    0.8607       449

Classification report @ best global threshold (t=0.50)

              precision    recall  f1-score   support

 no-recl (0)     0.9301    0.8987    0.9141       385
    recl (1)     0.4935    0.5938    0.5390        64

    accuracy                         0.8552       449
   macro avg     0.7118    0.7462    0.7266       449
weighted avg     0.8679    0.8552    0.8607       449

Classification report @ best per-language thresholds

              precision    recall  f1-score   support

 no-recl (0)     0.9388    0.8364    0.8846       385
    recl (1)     0.4057    0.6719    0.5059        64

    accuracy                         0.8129       449
   macro avg     0.6722    0.7541    0.6952       449
weighted avg     0.8628    0.8129    0.8306       449

Per-language metrics (at best-by-lang)

lang n acc f1_macro f1_weighted prec_macro rec_macro prec_weighted rec_weighted
en 154 0.7532 0.4962 0.7953 0.5077 0.5161 0.8493 0.7532
it 163 0.8773 0.8181 0.8824 0.7963 0.8502 0.8925 0.8773
es 132 0.8030 0.7054 0.8236 0.6823 0.7812 0.8674 0.8030

Data

  • Train/Dev: private multilingual splits with ~15% stratified Dev (by (lang,label)).
  • Source: merged EN/IT/ES data with bios retained (ignored if unused by model).

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import torch, numpy as np

repo = "SimoneAstarita/october-finetuning-more-variables-sweep-20251012-193706-t02"
tok = AutoTokenizer.from_pretrained(repo)
cfg = AutoConfig.from_pretrained(repo)
model = AutoModelForSequenceClassification.from_pretrained(repo)

texts = ["example text ..."]
langs = ["en"]

mode = "best_global"  # or "0.5", "by_lang"

enc = tok(texts, truncation=True, padding=True, max_length=256, return_tensors="pt")
with torch.no_grad():
    logits = model(**enc).logits
probs = torch.softmax(logits, dim=-1)[:, 1].cpu().numpy()

if mode == "0.5":
    th = 0.5
    preds = (probs >= th).astype(int)
elif mode == "best_global":
    th = getattr(cfg, "best_threshold_global", 0.5)
    preds = (probs >= th).astype(int)
elif mode == "by_lang":
    th_by_lang = getattr(cfg, "thresholds_by_lang", {})
    preds = np.zeros_like(probs, dtype=int)
    for lg in np.unique(langs):
        t = th_by_lang.get(lg, getattr(cfg, "best_threshold_global", 0.5))
        preds[np.array(langs) == lg] = (probs[np.array(langs) == lg] >= t).astype(int)
print(list(zip(texts, preds, probs)))

Additional files

reports.json: all metrics (macro/weighted/accuracy) for @0.5, @best_global, and @best_by_lang. config.json: stores thresholds: default_threshold, best_threshold_global, thresholds_by_lang. postprocessing.json: duplicate threshold info for external tools.

Downloads last month
2
Safetensors
Model size
0.6B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Collection including SimoneAstarita/trilingual-no-bio-20251012-t10