October ES-EN-IT
Collection
12 items
โข
Updated
Slur reclamation binary classifier
Task: LGBTQ+ reclamation vs non-reclamation use of harmful words on social media text.
Trial timestamp (UTC): 2025-10-12 19:37:06
Data case:
en-es-it
Model: Alibaba-NLP/gte-multilingual-base
| Hyperparameter | Value |
|---|---|
| LANGUAGES | en-es-it |
| LR | 1e-05 |
| EPOCHS | 5 |
| MAX_LENGTH | 256 |
| USE_BIO | False |
| USE_LANG_TOKEN | False |
| GATED_BIO | False |
| FOCAL_LOSS | True |
| FOCAL_GAMMA | 2.5 |
| USE_SAMPLER | False |
| R_DROP | True |
| R_KL_ALPHA | 0.5 |
| TEXT_NORMALIZE | True |
| Metric | Value |
|---|---|
| f1_macro_dev_0.5 | 0.7265709173014043 |
| f1_weighted_dev_0.5 | 0.8606644314617744 |
| accuracy_dev_0.5 | 0.8552338530066815 |
| f1_macro_dev_best_global | 0.7265709173014043 |
| f1_weighted_dev_best_global | 0.8606644314617744 |
| accuracy_dev_best_global | 0.8552338530066815 |
| f1_macro_dev_best_by_lang | 0.6952488687782805 |
| f1_weighted_dev_best_by_lang | 0.8306311662921121 |
| accuracy_dev_best_by_lang | 0.8129175946547884 |
| default_threshold | 0.5 |
| best_threshold_global | 0.5 |
| thresholds_by_lang | {"en": 0.4, "it": 0.5, "es": 0.45000000000000007} |
0.50.5{ "en": 0.4, "it": 0.5, "es": 0.45000000000000007 } precision recall f1-score support
no-recl (0) 0.9301 0.8987 0.9141 385
recl (1) 0.4935 0.5938 0.5390 64
accuracy 0.8552 449
macro avg 0.7118 0.7462 0.7266 449
weighted avg 0.8679 0.8552 0.8607 449
precision recall f1-score support
no-recl (0) 0.9301 0.8987 0.9141 385
recl (1) 0.4935 0.5938 0.5390 64
accuracy 0.8552 449
macro avg 0.7118 0.7462 0.7266 449
weighted avg 0.8679 0.8552 0.8607 449
precision recall f1-score support
no-recl (0) 0.9388 0.8364 0.8846 385
recl (1) 0.4057 0.6719 0.5059 64
accuracy 0.8129 449
macro avg 0.6722 0.7541 0.6952 449
weighted avg 0.8628 0.8129 0.8306 449
| lang | n | acc | f1_macro | f1_weighted | prec_macro | rec_macro | prec_weighted | rec_weighted |
|---|---|---|---|---|---|---|---|---|
| en | 154 | 0.7532 | 0.4962 | 0.7953 | 0.5077 | 0.5161 | 0.8493 | 0.7532 |
| it | 163 | 0.8773 | 0.8181 | 0.8824 | 0.7963 | 0.8502 | 0.8925 | 0.8773 |
| es | 132 | 0.8030 | 0.7054 | 0.8236 | 0.6823 | 0.7812 | 0.8674 | 0.8030 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import torch, numpy as np
repo = "SimoneAstarita/october-finetuning-more-variables-sweep-20251012-193706-t02"
tok = AutoTokenizer.from_pretrained(repo)
cfg = AutoConfig.from_pretrained(repo)
model = AutoModelForSequenceClassification.from_pretrained(repo)
texts = ["example text ..."]
langs = ["en"]
mode = "best_global" # or "0.5", "by_lang"
enc = tok(texts, truncation=True, padding=True, max_length=256, return_tensors="pt")
with torch.no_grad():
logits = model(**enc).logits
probs = torch.softmax(logits, dim=-1)[:, 1].cpu().numpy()
if mode == "0.5":
th = 0.5
preds = (probs >= th).astype(int)
elif mode == "best_global":
th = getattr(cfg, "best_threshold_global", 0.5)
preds = (probs >= th).astype(int)
elif mode == "by_lang":
th_by_lang = getattr(cfg, "thresholds_by_lang", {})
preds = np.zeros_like(probs, dtype=int)
for lg in np.unique(langs):
t = th_by_lang.get(lg, getattr(cfg, "best_threshold_global", 0.5))
preds[np.array(langs) == lg] = (probs[np.array(langs) == lg] >= t).astype(int)
print(list(zip(texts, preds, probs)))
reports.json: all metrics (macro/weighted/accuracy) for @0.5, @best_global, and @best_by_lang. config.json: stores thresholds: default_threshold, best_threshold_global, thresholds_by_lang. postprocessing.json: duplicate threshold info for external tools.