Whisper Small FR - Radiologie

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7673
  • Wer: 32.0536

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 6
  • seed: 3407
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
No log 6.25 100 0.7878 100.0
No log 12.5 200 0.7400 39.0006
No log 18.75 300 0.7597 33.4552
No log 25.0 400 0.7574 32.6630
0.0558 31.25 500 0.7604 32.6630
0.0558 37.5 600 0.7635 32.7239
0.0558 43.75 700 0.7639 32.5411
0.0558 50.0 800 0.7660 32.6021
0.0558 56.25 900 0.7668 32.7239
0.0003 62.5 1000 0.7673 32.0536

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
1
Safetensors
Model size
0.2B params
Tensor type
F16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for StephaneBah/whisper-small-rad-FR4_Combo

Finetuned
(3024)
this model