vit-base-patch16-224-in21k-leukemia
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the Leukemia Dataset hosted on kaggle https://www.kaggle.com/datasets/andrewmvd/leukemia-classification. It achieves the following results on the evaluation set:
- Train Loss: 0.3256
- Train Accuracy: 0.8795
- Validation Loss: 0.6907
- Validation Accuracy: 0.6848
- Epoch: 13
Model description
Google Vision Transormer (ViT). fine-tuned on the white blood cancer - Leukemia - dataset
Intended uses & limitations
This model was fine-tuned as a part of my project LeukemiaAI, a fully integrated pipeline
to detect Leukemia.
Github Repo: https://github.com/MohammedSaLah-Eldeen/LeukemiaAI
Training hyperparameters
- training_precision: mixed_float16
- optimizer: { 'inner_optimizer': { 'module': 'keras.optimizers.experimental', 'class_name': 'SGD', 'config': { 'name': 'SGD', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': 1, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': { 'module': 'keras.optimizers.schedules', 'class_name': 'CosineDecay', 'config': { 'initial_learning_rate': 0.001, 'decay_steps': 896, 'alpha': 0.0, 'name': None, 'warmup_target': None, 'warmup_steps': 0 }, 'registered_name': None }, 'momentum': 0.9, 'nesterov': False }, 'registered_name': None }, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000
}
Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|---|---|---|---|---|
| 0.5007 | 0.7629 | 0.7206 | 0.6643 | 0 |
| 0.3958 | 0.8418 | 0.7137 | 0.6686 | 1 |
| 0.3578 | 0.8632 | 0.6998 | 0.6789 | 2 |
| 0.3377 | 0.8713 | 0.6899 | 0.6843 | 3 |
| 0.3274 | 0.8778 | 0.6869 | 0.6832 | 4 |
| 0.3261 | 0.8792 | 0.6880 | 0.6859 | 5 |
| 0.3257 | 0.8797 | 0.6906 | 0.6848 | 6 |
| 0.3255 | 0.8796 | 0.6896 | 0.6859 | 7 |
| 0.3256 | 0.8794 | 0.6901 | 0.6848 | 8 |
| 0.3258 | 0.8795 | 0.6867 | 0.6864 | 9 |
| 0.3258 | 0.8793 | 0.6896 | 0.6859 | 10 |
| 0.3256 | 0.8796 | 0.6871 | 0.6864 | 11 |
| 0.3255 | 0.8795 | 0.6897 | 0.6853 | 12 |
| 0.3256 | 0.8795 | 0.6907 | 0.6848 | 13 |
Framework versions
- Transformers 4.35.0
- TensorFlow 2.13.0
- Datasets 2.1.0
- Tokenizers 0.14.1
- Downloads last month
- 9
Model tree for SuperMaker/vit-base-patch16-224-in21k-leukemia
Base model
google/vit-base-patch16-224-in21k