NOTE
The GitHub with the implementation and requirements.txt can be found here
Profluent-E1
Profluent-E1 is a faithful implementation of Profluent's E1 models (license) that integrates Huggingface AutoModel compatability and nice embedding functionality.
Use with π€ transformers
Supported models
model_dict = {
# Synthyra/Profluent-E1-150M
'Profluent-E1-150M': 'Profluent-Bio/E1-150m',
# Synthyra/Profluent-E1-150M
'Profluent-E1-300M': 'Profluent-Bio/E1-300m',
# Synthyra/Profluent-E1-150M
'Profluent-E1-600M': 'Profluent-Bio/E1-600m',
}
import torch
from transformers import AutoModelForMaskedLM
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForMaskedLM.from_pretrained('Synthyra/Profluent-E1-150M', trust_remote_code=True, dtype=torch.bfloat16).eval().to(device)
sequences = ['MPRTEIN', 'MSEQWENCE']
batch = model.prep_tokens.get_batch_kwargs(sequences, device=device)
output = model(**batch) # get all hidden states with output_hidden_states=True
print(output.logits.shape) # language modeling logits, (batch_size, seq_len, vocab_size), (2, 11, 34)
print(output.last_hidden_state.shape) # last hidden state of the model, (batch_size, seq_len, hidden_size), (2, 11, 768)
print(output.loss) # language modeling loss if you passed labels
#print(output.hidden_states) # all hidden states if you passed output_hidden_states=True (in tuple)
#print(outout.attentions) # all attention matrices if you passed output_attentions=True (in tuple)
Our E1 implementation also supports sequence and token level classification tasks like ESM2. Simply pass the number of labels during initialization.
from transformers import AutoModelForSequenceClassification, AutoModelForTokenClassification
model = AutoModelForSequenceClassification.from_pretrained('Synthyra/Profluent-E1-150M', num_labels=2, trust_remote_code=True)
logits = model(**batch, labels=labels).logits
print(logits.shape) # (batch_size, num_labels), (2, 2)
E1 weights were trained in bf16 and are in bf16 by default. You can load them in the precision of your choosing by leveraging the dtype parameter:
import torch
model = AutoModelForMaskedLM.from_pretrained('Synthyra/ESMplusplus_small', trust_remote_code=True, dtype=torch.float) # fp32
Embed entire datasets with no new code
To embed a list of protein sequences fast, just call embed_dataset. Sequences are sorted to reduce padding tokens, so the initial progress bar estimation is usually much longer than the actual time it will take.
Example:
embedding_dict = model.embed_dataset(
sequences=[
'MALWMRLLPLLALLALWGPDPAAA', ... # list of protein sequences
],
batch_size=2, # adjust for your GPU memory
max_len=512, # adjust for your needs
full_embeddings=False, # if True, no pooling is performed
embed_dtype=torch.float32, # cast to what dtype you want
pooling_types=['mean', 'cls'], # more than one pooling type will be concatenated together
sql=False, # if True, embeddings will be stored in SQLite database
sql_db_path='embeddings.db',
save=True, # if True, embeddings will be saved as a .pth file
save_path='embeddings.pth',
)
# embedding_dict is a dictionary mapping sequences to their embeddings as tensors for .pth or numpy arrays for sql
model.embed_dataset()
Args:
sequences: List of protein sequences
batch_size: Batch size for processing
max_len: Maximum sequence length
full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False)
pooling_type: Type of pooling ('mean' or 'cls')
sql: Whether to store embeddings in SQLite database - will be stored in float32
sql_db_path: Path to SQLite database
Returns:
Dictionary mapping sequences to embeddings, or None if sql=True
Note:
- If sql=True, embeddings can only be stored in float32
- sql is ideal if you need to stream a very large dataset for training in real-time
- save=True is ideal if you can store the entire embedding dictionary in RAM
- sql will be used if it is True and save is True or False
- If your sql database or .pth file is already present, they will be scanned first for already embedded sequences
- Sequences will be truncated to max_len and sorted by length in descending order for faster processing
Fine-tuning with π€ peft
model = AutoModelForSequenceClassification.from_pretrained('Synthyra/Profluent-E1-150M', num_labels=2, trust_remote_code=True)
# these modules handle E1 attention layers
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj"]
lora_config = LoraConfig(
r=8, # choose lora parameters to your liking
lora_alpha=16,
lora_dropout=0.01,
bias="none",
target_modules=target_modules,
)
# Apply LoRA to the model
model = get_peft_model(model, lora_config)
# Unfreeze the classifier head
for param in model.classifier.parameters():
param.requires_grad = True
For a more thourough example of fine-tuning, check out our example script here.
Citation
If you use any of this implementation or work please cite the following DOI and Profluent's paper.
@misc {FastPLMs,
author = { Hallee, Logan and Bichara, David and Gleghorn, Jason P.},
title = { FastPLMs: Fast, efficient, protien language model inference from Huggingface AutoModel.},
year = {2024},
url = { https://huggingface.co/Synthyra/ESMplusplus_small },
DOI = { 10.57967/hf/3726 },
publisher = { Hugging Face }
}
@article{Jain_Beazer_Ruffolo_Bhatnagar_Madani_2025,
title={E1: Retrieval-Augmented Protein Encoder Models},
url={https://www.biorxiv.org/content/early/2025/11/13/2025.11.12.688125},
DOI={10.1101/2025.11.12.688125},
journal={bioRxiv},
publisher={Cold Spring Harbor Laboratory},
author={Jain, Sarthak and Beazer, Joel and Ruffolo, Jeffrey A and Bhatnagar, Aadyot and Madani, Ali},
year={2025}
}
- Downloads last month
- 182