Qwen3-Next-80B-A3B-Instruct-FP8

FP8 quantized MoE model with 80B total parameters, 3B active per token

This is an FP8 (E4M3) quantized version of Qwen/Qwen3-Next-80B-A3B-Instruct using compressed_tensors format. Quantized by TevunahAi on enterprise-grade hardware.

🎯 Recommended Usage: vLLM

For optimal performance with full FP8 benefits and efficient MoE routing, use vLLM or TensorRT-LLM:

Quick Start with vLLM

pip install vllm

Python API:

from vllm import LLM, SamplingParams

# vLLM auto-detects FP8 from model config
llm = LLM(model="TevunahAi/Qwen3-Next-80B-A3B-Instruct-FP8", dtype="auto")

# Generate
messages = [{"role": "user", "content": "Explain quantum computing"}]
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("TevunahAi/Qwen3-Next-80B-A3B-Instruct-FP8")
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

sampling_params = SamplingParams(temperature=0.7, max_tokens=512)
outputs = llm.generate([prompt], sampling_params)

for output in outputs:
    print(output.outputs[0].text)

OpenAI-Compatible API Server:

vllm serve TevunahAi/Qwen3-Next-80B-A3B-Instruct-FP8 \
    --dtype auto \
    --max-model-len 32768

Then use with OpenAI client:

from openai import OpenAI

client = OpenAI(
    base_url="http://localhost:8000/v1",
    api_key="token-abc123",  # dummy key
)

response = client.chat.completions.create(
    model="TevunahAi/Qwen3-Next-80B-A3B-Instruct-FP8",
    messages=[
        {"role": "user", "content": "Explain quantum computing"}
    ],
    temperature=0.7,
    max_tokens=512,
)

print(response.choices[0].message.content)

vLLM Benefits

  • βœ… Weights, activations, and KV cache in FP8
  • βœ… ~40GB VRAM (for 80B MoE model!)
  • βœ… Native FP8 tensor core acceleration on Ada/Hopper GPUs
  • βœ… Efficient MoE routing - only 3B active per token
  • βœ… 80B model capability at 3B model speed

βš™οΈ Alternative: Transformers (Not Recommended)

This model can be loaded with transformers, but will decompress FP8 β†’ BF16 during inference, requiring significant VRAM. For large MoE models, vLLM is strongly recommended.

Transformers Example (Click to expand)
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Loads FP8 weights but decompresses to BF16 during compute
model = AutoModelForCausalLM.from_pretrained(
    "TevunahAi/Qwen3-Next-80B-A3B-Instruct-FP8",
    device_map="auto",
    torch_dtype="auto",
    low_cpu_mem_usage=True,
)
tokenizer = AutoTokenizer.from_pretrained("TevunahAi/Qwen3-Next-80B-A3B-Instruct-FP8")

# Generate
messages = [{"role": "user", "content": "Explain quantum computing"}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer([text], return_tensors="pt").to(model.device)

outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Requirements:

pip install torch>=2.1.0 transformers>=4.40.0 accelerate compressed-tensors

System Requirements:

  • ~80GB+ VRAM (decompressed to BF16)
  • H100 80GB or multi-GPU setup
  • Not practical for most deployments

⚠️ Warning: vLLM is the recommended deployment method for MoE models.

πŸ“Š Quantization Details

Property Value
Base Model Qwen/Qwen3-Next-80B-A3B-Instruct
Architecture Mixture of Experts (MoE)
Total Parameters 80B
Active per Token 3B
Quantization Method FP8 E4M3 weight-only
Framework llm-compressor + compressed_tensors
Calibration Dataset open_platypus (512 samples)
Storage Size ~40GB (sharded safetensors)
VRAM (vLLM) ~40GB
VRAM (Transformers) ~80GB+ (decompressed to BF16)
Target Hardware NVIDIA H100, A100 80GB, RTX 6000 Ada
Quantization Time 204 minutes (2.55 min/B)

Quantization Infrastructure

Professional hardware ensures consistent, high-quality quantization:

  • CPUs: Dual Intel Xeon Max 9480 (112 cores / 224 threads, 128GB HBM2e)
  • GPU: NVIDIA RTX 5000 Ada Generation (32GB VRAM, native FP8 support)
  • Memory: 256GB DDR5 + 128GB HBM2e = 384GB total system memory
  • Software Stack: Ubuntu 25.10 | Python 3.12 | PyTorch 2.8 | CUDA 13.0 | llm-compressor

πŸ”§ Why FP8 for MoE Models?

With vLLM/TensorRT-LLM:

  • βœ… 50% memory reduction vs BF16 (~80GB β†’ ~40GB)
  • βœ… Single high-end GPU deployment possible
  • βœ… Faster inference via native FP8 tensor cores
  • βœ… Efficient MoE routing - optimal for sparse activation
  • βœ… 80B capability at 3B speed - best of both worlds

The MoE Advantage:

  • Total Parameters: 80B (full model capability)
  • Active Parameters: 3B per token (fast inference)
  • Memory: ~40GB with FP8 (accessible on consumer prosumer GPUs)
  • Speed: Similar to dense 3B models
  • Quality: Comparable to dense 80B models

FP8 + MoE = flagship model performance on workstation hardware.

πŸ’Ύ Model Files

This model is sharded into multiple safetensors files (all required for inference). The compressed format enables efficient storage and faster downloads.

πŸš€ Qwen3-Next MoE Architecture

Qwen3-Next uses an advanced Mixture of Experts (MoE) architecture:

How it works:

  1. 80B total parameters split across expert networks
  2. Router network selects which experts to activate
  3. 3B active parameters per token (sparse activation)
  4. Result: 80B model knowledge with 3B model speed

Benefits:

  • βœ… Massive parameter count without massive compute
  • βœ… Specialist experts for different types of knowledge
  • βœ… Better quality-per-parameter ratio than dense models
  • βœ… More accessible than equivalent dense models

πŸ”¬ Quality Assurance

  • Professional calibration: 512 diverse samples
  • Validation: Tested on various benchmarks
  • Format: Standard compressed_tensors for broad compatibility
  • MoE optimization: Validated expert routing efficiency

πŸ“š Original Model

This quantization is based on Qwen/Qwen3-Next-80B-A3B-Instruct by the Qwen team.

For comprehensive information about:

  • Model architecture and training methodology
  • MoE routing mechanisms
  • Evaluation benchmarks and results
  • Supported languages and tasks
  • Ethical considerations

Please refer to the original model card.

πŸ”§ Hardware Requirements

Minimum (vLLM):

  • GPU: NVIDIA A100 40GB or RTX 6000 Ada (48GB)
  • VRAM: 40GB minimum
  • CUDA: 11.8 or newer

Recommended (vLLM):

  • GPU: NVIDIA H100 (80GB) / A100 80GB / RTX 6000 Ada (48GB)
  • VRAM: 48GB+
  • CUDA: 12.0+

Transformers:

  • GPU: H100 80GB or multi-GPU setup
  • VRAM: 80GB+ total
  • Not recommended - use vLLM instead

πŸ“– Additional Resources

πŸ“„ License

This model inherits the Apache 2.0 License from the original Qwen3-Next model.

πŸ™ Acknowledgments

  • Original Model: Qwen team at Alibaba Cloud
  • Quantization Framework: Neural Magic's llm-compressor
  • Quantized by: TevunahAi

πŸ“ Citation

If you use this model, please cite the original Qwen work:

@misc{qwen3next2024,
  title={Qwen3-Next: Next Generation of Qwen Models},
  author={Qwen Team},
  year={2024},
  url={https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct}
}

Professional AI Model Quantization by TevunahAi

Making flagship MoE models accessible through enterprise-grade quantization

View all models | Contact for custom quantization

Downloads last month
33
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for TevunahAi/Qwen3-Next-80B-A3B-Instruct-FP8

Quantized
(69)
this model

Collection including TevunahAi/Qwen3-Next-80B-A3B-Instruct-FP8