File size: 8,783 Bytes
cd73482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08b20c9
cd73482
08b20c9
cd73482
08b20c9
cd73482
08b20c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd73482
 
 
 
 
08b20c9
cd73482
 
 
08b20c9
cd73482
 
 
 
 
 
 
 
 
 
 
 
 
08b20c9
 
 
 
cd73482
08b20c9
 
 
 
cd73482
08b20c9
 
 
cd73482
08b20c9
cd73482
08b20c9
 
 
 
 
 
 
 
 
 
 
 
 
 
cd73482
 
 
08b20c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd73482
08b20c9
cd73482
08b20c9
cd73482
08b20c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd73482
08b20c9
cd73482
08b20c9
cd73482
08b20c9
cd73482
08b20c9
cd73482
08b20c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
---
license: apache-2.0
base_model: Qwen/Qwen3-Next-80B-A3B-Instruct
tags:
  - fp8
  - quantized
  - qwen
  - qwen3
  - instruct
  - moe
  - llmcompressor
  - vllm
library_name: transformers
pipeline_tag: text-generation
---

# Qwen3-Next-80B-A3B-Instruct-FP8

**FP8 quantized MoE model with 80B total parameters, 3B active per token**

This is an FP8 (E4M3) quantized version of [Qwen/Qwen3-Next-80B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct) using compressed_tensors format. Quantized by [TevunahAi](https://huggingface.co/TevunahAi) on enterprise-grade hardware.

## 🎯 Recommended Usage: vLLM

For optimal performance with **full FP8 benefits** and efficient MoE routing, use **vLLM** or **TensorRT-LLM**:

### Quick Start with vLLM

```bash
pip install vllm
```

**Python API:**

```python
from vllm import LLM, SamplingParams

# vLLM auto-detects FP8 from model config
llm = LLM(model="TevunahAi/Qwen3-Next-80B-A3B-Instruct-FP8", dtype="auto")

# Generate
messages = [{"role": "user", "content": "Explain quantum computing"}]
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("TevunahAi/Qwen3-Next-80B-A3B-Instruct-FP8")
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

sampling_params = SamplingParams(temperature=0.7, max_tokens=512)
outputs = llm.generate([prompt], sampling_params)

for output in outputs:
    print(output.outputs[0].text)
```

**OpenAI-Compatible API Server:**

```bash
vllm serve TevunahAi/Qwen3-Next-80B-A3B-Instruct-FP8 \
    --dtype auto \
    --max-model-len 32768
```

Then use with OpenAI client:

```python
from openai import OpenAI

client = OpenAI(
    base_url="http://localhost:8000/v1",
    api_key="token-abc123",  # dummy key
)

response = client.chat.completions.create(
    model="TevunahAi/Qwen3-Next-80B-A3B-Instruct-FP8",
    messages=[
        {"role": "user", "content": "Explain quantum computing"}
    ],
    temperature=0.7,
    max_tokens=512,
)

print(response.choices[0].message.content)
```

### vLLM Benefits

- βœ… **Weights, activations, and KV cache in FP8**
- βœ… **~40GB VRAM** (for 80B MoE model!)
- βœ… **Native FP8 tensor core acceleration** on Ada/Hopper GPUs
- βœ… **Efficient MoE routing** - only 3B active per token
- βœ… **80B model capability at 3B model speed**

## βš™οΈ Alternative: Transformers (Not Recommended)

This model can be loaded with `transformers`, but **will decompress FP8 β†’ BF16 during inference**, requiring significant VRAM. For large MoE models, **vLLM is strongly recommended**.

<details>
<summary>Transformers Example (Click to expand)</summary>

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Loads FP8 weights but decompresses to BF16 during compute
model = AutoModelForCausalLM.from_pretrained(
    "TevunahAi/Qwen3-Next-80B-A3B-Instruct-FP8",
    device_map="auto",
    torch_dtype="auto",
    low_cpu_mem_usage=True,
)
tokenizer = AutoTokenizer.from_pretrained("TevunahAi/Qwen3-Next-80B-A3B-Instruct-FP8")

# Generate
messages = [{"role": "user", "content": "Explain quantum computing"}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer([text], return_tensors="pt").to(model.device)

outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

**Requirements:**
```bash
pip install torch>=2.1.0 transformers>=4.40.0 accelerate compressed-tensors
```

**System Requirements:**
- **~80GB+ VRAM** (decompressed to BF16)
- H100 80GB or multi-GPU setup
- Not practical for most deployments

**⚠️ Warning:** vLLM is the recommended deployment method for MoE models.

</details>

## πŸ“Š Quantization Details

| Property | Value |
|----------|-------|
| **Base Model** | [Qwen/Qwen3-Next-80B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct) |
| **Architecture** | Mixture of Experts (MoE) |
| **Total Parameters** | 80B |
| **Active per Token** | 3B |
| **Quantization Method** | FP8 E4M3 weight-only |
| **Framework** | llm-compressor + compressed_tensors |
| **Calibration Dataset** | open_platypus (512 samples) |
| **Storage Size** | ~40GB (sharded safetensors) |
| **VRAM (vLLM)** | ~40GB |
| **VRAM (Transformers)** | ~80GB+ (decompressed to BF16) |
| **Target Hardware** | NVIDIA H100, A100 80GB, RTX 6000 Ada |
| **Quantization Time** | 204 minutes (2.55 min/B) |

### Quantization Infrastructure

Professional hardware ensures consistent, high-quality quantization:

- **CPUs:** Dual Intel Xeon Max 9480 (112 cores / 224 threads, 128GB HBM2e)
- **GPU:** NVIDIA RTX 5000 Ada Generation (32GB VRAM, native FP8 support)
- **Memory:** 256GB DDR5 + 128GB HBM2e = 384GB total system memory
- **Software Stack:** Ubuntu 25.10 | Python 3.12 | PyTorch 2.8 | CUDA 13.0 | llm-compressor

## πŸ”§ Why FP8 for MoE Models?

### With vLLM/TensorRT-LLM:
- βœ… **50% memory reduction** vs BF16 (~80GB β†’ ~40GB)
- βœ… **Single high-end GPU deployment** possible
- βœ… **Faster inference** via native FP8 tensor cores
- βœ… **Efficient MoE routing** - optimal for sparse activation
- βœ… **80B capability at 3B speed** - best of both worlds

### The MoE Advantage:
- **Total Parameters:** 80B (full model capability)
- **Active Parameters:** 3B per token (fast inference)
- **Memory:** ~40GB with FP8 (accessible on consumer prosumer GPUs)
- **Speed:** Similar to dense 3B models
- **Quality:** Comparable to dense 80B models

**FP8 + MoE = flagship model performance on workstation hardware.**

## πŸ’Ύ Model Files

This model is sharded into multiple safetensors files (all required for inference). The compressed format enables efficient storage and faster downloads.

## πŸš€ Qwen3-Next MoE Architecture

Qwen3-Next uses an advanced Mixture of Experts (MoE) architecture:

**How it works:**
1. **80B total parameters** split across expert networks
2. **Router network** selects which experts to activate
3. **3B active parameters** per token (sparse activation)
4. **Result:** 80B model knowledge with 3B model speed

**Benefits:**
- βœ… Massive parameter count without massive compute
- βœ… Specialist experts for different types of knowledge
- βœ… Better quality-per-parameter ratio than dense models
- βœ… More accessible than equivalent dense models

## πŸ”¬ Quality Assurance

- **Professional calibration:** 512 diverse samples
- **Validation:** Tested on various benchmarks
- **Format:** Standard compressed_tensors for broad compatibility
- **MoE optimization:** Validated expert routing efficiency

## πŸ“š Original Model

This quantization is based on [Qwen/Qwen3-Next-80B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct) by the Qwen team.

For comprehensive information about:
- Model architecture and training methodology
- MoE routing mechanisms
- Evaluation benchmarks and results
- Supported languages and tasks
- Ethical considerations

Please refer to the [original model card](https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct).

## πŸ”§ Hardware Requirements

### Minimum (vLLM):
- **GPU:** NVIDIA A100 40GB or RTX 6000 Ada (48GB)
- **VRAM:** 40GB minimum
- **CUDA:** 11.8 or newer

### Recommended (vLLM):
- **GPU:** NVIDIA H100 (80GB) / A100 80GB / RTX 6000 Ada (48GB)
- **VRAM:** 48GB+
- **CUDA:** 12.0+

### Transformers:
- **GPU:** H100 80GB or multi-GPU setup
- **VRAM:** 80GB+ total
- **Not recommended** - use vLLM instead

## πŸ“– Additional Resources

- **vLLM Documentation:** [docs.vllm.ai](https://docs.vllm.ai/)
- **TensorRT-LLM:** [github.com/NVIDIA/TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM)
- **TevunahAi Models:** [huggingface.co/TevunahAi](https://huggingface.co/TevunahAi)
- **llm-compressor:** [github.com/vllm-project/llm-compressor](https://github.com/vllm-project/llm-compressor)
- **Qwen Documentation:** [qwenlm.github.io](https://qwenlm.github.io/)

## πŸ“„ License

This model inherits the **Apache 2.0 License** from the original Qwen3-Next model.

## πŸ™ Acknowledgments

- **Original Model:** Qwen team at Alibaba Cloud
- **Quantization Framework:** Neural Magic's llm-compressor
- **Quantized by:** [TevunahAi](https://huggingface.co/TevunahAi)

## πŸ“ Citation

If you use this model, please cite the original Qwen work:

```bibtex
@misc{qwen3next2024,
  title={Qwen3-Next: Next Generation of Qwen Models},
  author={Qwen Team},
  year={2024},
  url={https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct}
}
```

---

<div align="center">

**Professional AI Model Quantization by TevunahAi**

*Making flagship MoE models accessible through enterprise-grade quantization*

[View all models](https://huggingface.co/TevunahAi) | [Contact for custom quantization](https://huggingface.co/TevunahAi)

</div>