LLaMA-2-7B CODE LoRA Adapter

This is a LoRA adapter for LLaMA-2-7B fine-tuned on code domain data.

Model Details

  • Base Model: meta-llama/Llama-2-7b-hf
  • Adapter Type: LoRA (Low-Rank Adaptation)
  • Domain: Code
  • Training Data: Python code instructions
  • Training Examples: 2000 (1600 train, 200 val, 200 test)
  • Epochs: 2

LoRA Configuration

  • Rank (r): 16
  • Alpha: 32
  • Dropout: 0.05
  • Target Modules: q_proj, v_proj, k_proj, o_proj

Performance Metrics (100 test examples)

  • Loss: 0.573
  • Perplexity: 1.773
  • BLEU: 32.76

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

# Load base model
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-2-7b-hf",
    load_in_8bit=True,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")

# Load adapter
model = PeftModel.from_pretrained(model, "Thamirawaran/llama2-7b-code-lora")

# Generate
prompt = 'Write a Python function to sort a list'
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_length=256, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Training Details

  • Trained with FYP_MDLE library
  • 8-bit quantization during training
  • Gradient accumulation: 16 steps
  • Learning rate: 2e-4
  • Warmup steps: 20

Citation

@misc{llama2-code-lora,
  author = {Team RAISE},
  title = {LLaMA-2-7B Code LoRA Adapter},
  year = {2026},
  publisher = {HuggingFace},
  howpublished = {\url{https://huggingface.co/Thamirawaran/llama2-7b-code-lora}}
}

License

Apache 2.0

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train Thamirawaran/llama2-7b-code-lora