moondream2 is a small vision language model designed to run efficiently on edge devices. Check out the GitHub repository for details, or try it out on the Hugging Face Space!

Benchmarks

Release VQAv2 GQA TextVQA DocVQA TallyQA
(simple/full)
POPE
(rand/pop/adv)
2024-07-23 (latest) 79.4 64.9 60.2 61.9 82.0 / 76.8 91.3 / 89.7 / 86.9
2024-05-20 79.4 63.1 57.2 30.5 82.1 / 76.6 91.5 / 89.6 / 86.2
2024-05-08 79.0 62.7 53.1 30.5 81.6 / 76.1 90.6 / 88.3 / 85.0
2024-04-02 77.7 61.7 49.7 24.3 80.1 / 74.2 -
2024-03-13 76.8 60.6 46.4 22.2 79.6 / 73.3 -
2024-03-06 75.4 59.8 43.1 20.9 79.5 / 73.2 -
2024-03-04 74.2 58.5 36.4 - - -

Usage

pip install transformers einops
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image

model_id = "vikhyatk/moondream2"
revision = "2024-07-23"
model = AutoModelForCausalLM.from_pretrained(
    model_id, trust_remote_code=True, revision=revision
)
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)

image = Image.open('<IMAGE_PATH>')
enc_image = model.encode_image(image)
print(model.answer_question(enc_image, "Describe this image.", tokenizer))

The model is updated regularly, so we recommend pinning the model version to a specific release as shown above.

Downloads last month
459
GGUF
Model size
1B params
Architecture
phi2
Hardware compatibility
Log In to view the estimation

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support