Add model card with metadata and links

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +119 -0
README.md ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-to-image
4
+ library_name: diffusers
5
+ ---
6
+
7
+ # PaCo-RL: Advancing Reinforcement Learning for Consistent Image Generation with Pairwise Reward Modeling
8
+
9
+ The model presented in [PaCo-RL: Advancing Reinforcement Learning for Consistent Image Generation with Pairwise Reward Modeling](https://huggingface.co/papers/2512.04784).
10
+
11
+ Project Page: https://x-gengroup.github.io/HomePage_PaCo-RL/
12
+ Code: https://github.com/X-GenGroup/PaCo-RL
13
+
14
+ <p align="center">
15
+ <b>Advancing Reinforcement Learning for Consistent Image Generation with Pairwise Reward Modeling</b>
16
+ </p>
17
+
18
+ <div align="center">
19
+ <a href='https://arxiv.org/abs/2512.04784'><img src='https://img.shields.io/badge/ArXiv-red?logo=arxiv'></a> &nbsp;
20
+ <a href='https://x-gengroup.github.io/HomePage_PaCo-RL/'><img src='https://img.shields.io/badge/ProjectPage-purple?logo=github'></a> &nbsp;
21
+ <a href="https://github.com/X-GenGroup/PaCo-RL"><img src="https://img.shields.io/badge/Code-9E95B7?logo=github"></a> &nbsp;
22
+ <a href='https://huggingface.co/collections/X-GenGroup/paco-rl'><img src='https://img.shields.io/badge/Data & Model-green?logo=huggingface'></a> &nbsp;
23
+ </div>
24
+
25
+ ## 🌟 Overview
26
+
27
+ **PaCo-RL** is a comprehensive framework for consistent image generation through reinforcement learning, addressing challenges in preserving identities, styles, and logical coherence across multiple images for storytelling and character design applications.
28
+
29
+ ### Key Components
30
+
31
+ - **PaCo-Reward**: A pairwise consistency evaluator with task-aware instruction and CoT reasoning.
32
+ - **PaCo-GRPO**: Efficient RL optimization with resolution-decoupled training and log-tamed multi-reward aggregation
33
+
34
+ ## πŸš€ Quick Start
35
+
36
+ ### Installation
37
+ ```bash
38
+ git clone https://github.com/X-GenGroup/PaCo-RL.git
39
+ cd PaCo-RL
40
+ ```
41
+
42
+ ### Train Reward Model
43
+ ```bash
44
+ cd PaCo-Reward
45
+ conda create -n paco-reward python=3.12 -y
46
+ conda activate paco-reward
47
+ cd LLaMA-Factory && pip install -e ".[torch,metrics]" --no-build-isolation
48
+ cd .. && bash train/paco_reward.sh
49
+ ```
50
+
51
+ See πŸ“– [PaCo-Reward Documentation](PaCo-Reward/README.md) for detailed guide.
52
+
53
+ ### Run RL Training
54
+ ```bash
55
+ cd PaCo-GRPO
56
+ conda create -n paco-grpo python=3.12 -y
57
+ conda activate paco-grpo
58
+ pip install -e .
59
+
60
+ # Setup vLLM reward server
61
+ conda create -n vllm python=3.12 -y
62
+ conda activate vllm && pip install vllm
63
+ export CUDA_VISIBLE_DEVICES=0
64
+ export VLLM_MODEL_PATHS='X-GenGroup/PaCo-Reward-7B'
65
+ export VLLM_MODEL_NAMES='Paco-Reward-7B'
66
+ bash vllm_server/launch.sh
67
+
68
+ # Start training
69
+ export CUDA_VISIBLE_DEVICES=1,2,3,4,5,6,7
70
+ conda activate paco-grpo
71
+ bash scripts/single_node/train_flux.sh t2is
72
+ ```
73
+
74
+ See πŸ“– [PaCo-GRPO Documentation](PaCo-GRPO/README.md) for detailed guide.
75
+
76
+ ## πŸ“ Repository Structure
77
+ ```
78
+ PaCo-RL/
79
+ β”œβ”€β”€ PaCo-GRPO/ # RL training framework
80
+ β”‚ β”œβ”€β”€ config/ # RL configurations
81
+ β”‚ β”œβ”€β”€ scripts/ # Training scripts
82
+ β”‚ └── README.md
83
+ β”œβ”€β”€ PaCo-Reward/ # Reward model training
84
+ β”‚ β”œβ”€β”€ LLaMA-Factory/ # Training framework
85
+ β”‚ β”œβ”€β”€ config/ # Training configurations
86
+ β”‚ └── README.md
87
+ └── README.md
88
+ ```
89
+
90
+ ## 🎁 Model Zoo
91
+
92
+ | Model | Type | HuggingFace |
93
+ |-------|------|-------------|
94
+ | **PaCo-Reward-7B** | Reward Model | [πŸ€— Link](https://huggingface.co/X-GenGroup/PaCo-Reward-7B) |
95
+ | **PaCo-Reward-7B-Lora** | Reward Model (LoRA) | [πŸ€— Link](https://huggingface.co/X-GenGroup/PaCo-Reward-7B-Lora) |
96
+ | **PaCo-FLUX.1-dev** | T2I Model (LoRA) | [πŸ€— Link](https://huggingface.co/X-GenGroup/PaCo-FLUX.1-dev-Lora) |
97
+ | **PaCo-FLUX.1-Kontext-dev** | Image Editing Model (LoRA) | [πŸ€— Link](https://huggingface.co/X-GenGroup/PaCo-FLUX.1-Kontext-Lora) |
98
+ | **PaCo-QwenImage-Edit** | Image Editing Model (LoRA) | [πŸ€— Link](https://huggingface.co/X-GenGroup/PaCo-Qwen-Image-Edit-Lora) |
99
+
100
+ ## πŸ€— Acknowledgement
101
+
102
+ Our work is built upon [Flow-GRPO](https://github.com/yifan123/flow_grpo), [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory), [vLLM](https://github.com/vllm-project/vllm), and [Qwen2.5-VL](https://github.com/QwenLM/Qwen3-VL). We sincerely thank the authors for their valuable contributions to the community.
103
+
104
+ ## ⭐ Citation
105
+ ```bibtex
106
+ @misc{ping2025pacorladvancingreinforcementlearning,
107
+ title={PaCo-RL: Advancing Reinforcement Learning for Consistent Image Generation with Pairwise Reward Modeling},
108
+ author={Bowen Ping and Chengyou Jia and Minnan Luo and Changliang Xia and Xin Shen and Zhuohang Dang and Hangwei Qian},
109
+ year={2025},
110
+ eprint={2512.04784},
111
+ archivePrefix={arXiv},
112
+ primaryClass={cs.CV},
113
+ url={https://arxiv.org/abs/2512.04784},
114
+ }
115
+ ```
116
+
117
+ <div align="center">
118
+ <sub>⭐ Star us on GitHub if you find PaCo-RL helpful!</sub>
119
+ </div>