Add comprehensive model card for PaCo-RL

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +115 -0
README.md ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: image-to-image
4
+ library_name: diffusers
5
+ ---
6
+
7
+ # PaCo-RL: Advancing Reinforcement Learning for Consistent Image Generation with Pairwise Reward Modeling
8
+
9
+ This repository presents **PaCo-RL**, a comprehensive framework for consistent image generation, as described in the paper [PaCo-RL: Advancing Reinforcement Learning for Consistent Image Generation with Pairwise Reward Modeling](https://huggingface.co/papers/2512.04784).
10
+
11
+ Project Page: [https://x-gengroup.github.io/HomePage_PaCo-RL/](https://x-gengroup.github.io/HomePage_PaCo-RL/)
12
+ Code Repository: [https://github.com/X-GenGroup/PaCo-RL](https://github.com/X-GenGroup/PaCo-RL)
13
+
14
+ <div align="center">
15
+ <a href='https://arxiv.org/abs/2512.04784'><img src='https://img.shields.io/badge/ArXiv-red?logo=arxiv'></a> &nbsp;
16
+ <a href='https://x-gengroup.github.io/HomePage_PaCo-RL/'><img src='https://img.shields.io/badge/ProjectPage-purple?logo=github'></a> &nbsp;
17
+ <a href="https://github.com/X-GenGroup/PaCo-RL"><img src="https://img.shields.io/badge/Code-9E95B7?logo=github"></a> &nbsp;
18
+ <a href='https://huggingface.co/collections/X-GenGroup/paco-rl'><img src='https://img.shields.io/badge/Data & Model-green?logo=huggingface'></a> &nbsp;
19
+ </div>
20
+
21
+ ## 🌟 Overview
22
+
23
+ **PaCo-RL** is a comprehensive framework for consistent image generation through reinforcement learning, addressing challenges in preserving identities, styles, and logical coherence across multiple images for storytelling and character design applications.
24
+
25
+ ### Key Components
26
+
27
+ - **PaCo-Reward**: A pairwise consistency evaluator with task-aware instruction and CoT reasoning.
28
+ - **PaCo-GRPO**: Efficient RL optimization with resolution-decoupled training and log-tamed multi-reward aggregation
29
+
30
+ ## πŸš€ Quick Start
31
+
32
+ ### Installation
33
+ ```bash
34
+ git clone https://github.com/X-GenGroup/PaCo-RL.git
35
+ cd PaCo-RL
36
+ ```
37
+
38
+ ### Train Reward Model
39
+ ```bash
40
+ cd PaCo-Reward
41
+ conda create -n paco-reward python=3.12 -y
42
+ conda activate paco-reward
43
+ cd LLaMA-Factory && pip install -e ".[torch,metrics]" --no-build-isolation
44
+ cd .. && bash train/paco_reward.sh
45
+ ```
46
+
47
+ See πŸ“– [PaCo-Reward Documentation](PaCo-Reward/README.md) for detailed guide.
48
+
49
+ ### Run RL Training
50
+ ```bash
51
+ cd PaCo-GRPO
52
+ conda create -n paco-grpo python=3.12 -y
53
+ conda activate paco-grpo
54
+ pip install -e .
55
+
56
+ # Setup vLLM reward server
57
+ conda create -n vllm python=3.12 -y
58
+ conda activate vllm && pip install vllm
59
+ export CUDA_VISIBLE_DEVICES=0
60
+ export VLLM_MODEL_PATHS='X-GenGroup/PaCo-Reward-7B'
61
+ export VLLM_MODEL_NAMES='Paco-Reward-7B'
62
+ bash vllm_server/launch.sh
63
+
64
+ # Start training
65
+ export CUDA_VISIBLE_DEVICES=1,2,3,4,5,6,7
66
+ conda activate paco-grpo
67
+ bash scripts/single_node/train_flux.sh t2is
68
+ ```
69
+
70
+ See πŸ“– [PaCo-GRPO Documentation](PaCo-GRPO/README.md) for detailed guide.
71
+
72
+ ## πŸ“ Repository Structure
73
+ ```
74
+ PaCo-RL/
75
+ β”œβ”€β”€ PaCo-GRPO/ # RL training framework
76
+ β”‚ β”œβ”€β”€ config/ # RL configurations
77
+ β”‚ β”œβ”€β”€ scripts/ # Training scripts
78
+ β”‚ └── README.md
79
+ β”œβ”€β”€ PaCo-Reward/ # Reward model training
80
+ β”‚ β”œβ”€β”€ LLaMA-Factory/ # Training framework
81
+ β”‚ β”œβ”€β”€ config/ # Training configurations
82
+ β”‚ └── README.md
83
+ └── README.md
84
+ ```
85
+
86
+ ## 🎁 Model Zoo
87
+
88
+ | Model | Type | HuggingFace |
89
+ |-------|------|-------------|
90
+ | **PaCo-Reward-7B** | Reward Model | [πŸ€— Link](https://huggingface.co/X-GenGroup/PaCo-Reward-7B) |
91
+ | **PaCo-Reward-7B-Lora** | Reward Model (LoRA) | [πŸ€— Link](https://huggingface.co/X-GenGroup/PaCo-Reward-7B-Lora) |
92
+ | **PaCo-FLUX.1-dev** | T2I Model (LoRA) | [πŸ€— Link](https://huggingface.co/X-GenGroup/PaCo-FLUX.1-dev-Lora) |
93
+ | **PaCo-FLUX.1-Kontext-dev** | Image Editing Model (LoRA) | [πŸ€— Link](https://huggingface.co/X-GenGroup/PaCo-FLUX.1-Kontext-Lora) |
94
+ | **PaCo-QwenImage-Edit** | Image Editing Model (LoRA) | [πŸ€— Link](https://huggingface.co/X-GenGroup/PaCo-Qwen-Image-Edit-Lora) |
95
+
96
+ ## πŸ€— Acknowledgement
97
+
98
+ Our work is built upon [Flow-GRPO](https://github.com/yifan123/flow_grpo), [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory), [vLLM](https://github.com/vllm-project/vllm), and [Qwen2.5-VL](https://github.com/QwenLM/Qwen3-VL). We sincerely thank the authors for their valuable contributions to the community.
99
+
100
+ ## ⭐ Citation
101
+ ```bibtex
102
+ @misc{ping2025pacorladvancingreinforcementlearning,
103
+ title={PaCo-RL: Advancing Reinforcement Learning for Consistent Image Generation with Pairwise Reward Modeling},
104
+ author={Bowen Ping and Chengyou Jia and Minnan Luo and Changliang Xia and Xin Shen and Zhuohang Dang and Hangwei Qian},
105
+ year={2025},
106
+ eprint={2512.04784},
107
+ archivePrefix={arXiv},
108
+ primaryClass={cs.CV},
109
+ url={https://arxiv.org/abs/2512.04784},
110
+ }
111
+ ```
112
+
113
+ <div align="center">
114
+ <sub>⭐ Star us on GitHub if you find PaCo-RL helpful!</sub>
115
+ </div>