xmlroberta-sentiment-crtass
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9655
- Accuracy: 0.6648
- Precision: 0.6613
- Recall: 0.6660
- F1: 0.6632
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 1.0561 | 1.0 | 481 | 0.9230 | 0.5754 | 0.5818 | 0.5748 | 0.5281 |
| 0.891 | 2.0 | 962 | 0.8323 | 0.6400 | 0.6456 | 0.6400 | 0.6414 |
| 0.7359 | 3.0 | 1443 | 0.9667 | 0.6847 | 0.6754 | 0.6792 | 0.6716 |
| 0.5828 | 4.0 | 1924 | 0.9159 | 0.6743 | 0.6764 | 0.6737 | 0.6746 |
| 0.4693 | 5.0 | 2405 | 1.0925 | 0.6535 | 0.6707 | 0.6386 | 0.6453 |
| 0.4106 | 6.0 | 2886 | 1.7308 | 0.6743 | 0.6768 | 0.6653 | 0.6689 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 2
Model tree for YesidRG/xmlroberta-sentiment-crtass
Base model
FacebookAI/xlm-roberta-large