bert-base-multilingual-cased-finetuned-PQuAD-3epochs
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8517
- {'exact': 73.3816545863534, 'f1': 86.40922381247157, 'total': 8002, 'HasAns_exact': 67.41130091984232, 'HasAns_f1': 84.53459411093914, 'HasAns_total': 6088, 'NoAns_exact': 92.37199582027168, 'NoAns_f1': 92.37199582027168, 'NoAns_total': 1914, 'best_exact': 73.3816545863534, 'best_exact_thresh': 0.0, 'best_f1': 86.40922381247229, 'best_f1_thresh': 0.0}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.7978 | 1.0 | 4051 | 0.8395 |
| 0.5898 | 2.0 | 8102 | 0.8184 |
| 0.4274 | 3.0 | 12153 | 0.8517 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 123
Model tree for Z-Jafari/bert-base-multilingual-cased-finetuned-PQuAD-3epochs
Base model
google-bert/bert-base-multilingual-cased