bert-fa-base-uncased-finetuned-PQuAD-3epochs
This model is a fine-tuned version of HooshvareLab/bert-fa-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9011
- {'exact': 74.38140464883779, 'f1': 87.1425541703777, 'total': 8002, 'HasAns_exact': 68.61038107752957, 'HasAns_f1': 85.38349514969813, 'HasAns_total': 6088, 'NoAns_exact': 92.73772204806687, 'NoAns_f1': 92.73772204806687, 'NoAns_total': 1914, 'best_exact': 74.38140464883779, 'best_exact_thresh': 0.0, 'best_f1': 87.14255417037822, 'best_f1_thresh': 0.0}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.7492 | 1.0 | 4000 | 0.7875 |
| 0.4947 | 2.0 | 8000 | 0.8019 |
| 0.3259 | 3.0 | 12000 | 0.9011 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 122
Model tree for Z-Jafari/bert-fa-base-uncased-finetuned-PQuAD-3epochs
Base model
HooshvareLab/bert-fa-base-uncased